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Método para Caracterização de Textura de Sedimentos Usando Técnicas 

Espectroscópicas e Análise Multivariada 

Resumo: O objetivo deste estudo foi apresentar um método para caracterização da textura de sedimentos 

combinando três técnicas espectroscópicas com analise multivariada. Em particular, foram utilizados dados de 

medidas de espectroscopia de absorção atômica de chama (FAAS), fluorescência de raios X por dispersão em 

energia (EDXRF) e espectroscopia fotoacústica (PAS) em amostras de sedimento superficial de lago, os quais foram 

combinados com o método de análise de componentes principais para a analise exploratória de dados e o método 

de regressão dos mínimos quadrados parciais (PLS) para a estimativa indireta da textura dos sedimentos. Foi 

possível inferir valores quantitativos de tamanho de partícula usando dados das três técnicas aliada a regressão por 

PLS, a qual permitiu obter dados implícitos em cada conjunto de dados. A mesma classificação em função da textura 

das amostras foi verificada para todas as técnicas espectroscópicas. No entanto,  a classificação por EDXRF ou PAS 

foi mais simples, rápida, barata e não destrutiva quando comparada com a FAAS. No caso da previsão quantitativa 

da granulometria pela regressão por PLS, os resultados foram menos acurados por PAS, porém foram satisfatórios 

por EDXRF e FAAS. Em geral, os resultados são promissores indicando a viabilidade do método. Contudo, um maior 

numero de amostras precisa ser analisado para implementar a metodologia. 

Palavras-chave: Tamanho de partícula; sedimento; análise de componentes principais; regressão por mínimos 

quadrados parciais; espectroscopia. 

 

Abstract 

The aim of this study was to present a method for sediment texture characterization combining three spectroscopy 

techniques with multivariate analysis. Specifically, data were used from flame atomic absorption spectroscopy 

(FAAS), energy dispersive X-ray fluorescence (EDXRF) and photoacoustic spectroscopy (PAS) measurements in 

superficial lake sediment samples, which were combined with principal component analysis for exploratory data 

analysis and with partial least square (PLS) regression for indirect estimative of  clay and sand textures . It was 

possible to infer quantitative values of grain size using the data from the three techniques allied with PLS 

regression, which allowed to obtain implicit information in each data set. The same classifications in accordance 

with samples texture were verified for all the applied spectroscopic methods. However, the classification  by EDXRF 

or PAS was simpler, faster, cheaper and non destructive when compared with FAAS. In the case of granulometry 

quantitative prediction by PLS regression, the results for PAS were less accurate, but were satisfactory for EDXRF 

and FAAS. In general the results are promising, indicating the method viability, although a larger sampling is 

necessary to implement the methodology. 

Keywords: Grain size; sediment; principal component analysis; partial least square regression; spectroscopy. 
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1. Introduction 

 

Soil and sediment studies are very 

important due to their relation to agriculture 

and the environment. Their physical and 

chemical properties will determine the 

specific applications. For these reasons, an 

interdisciplinary study, considering physics, 

chemistry, statistics, mineralogy and biology 

areas, is fundamental. One of the soil and 

sediment properties of interest is the texture. 

It refers to the shape, size and three-

dimensional arrangement of the particles 

that make up soil and sediment.  

The sediment is a major compartment of 

the aquatic ecosystem, forming a variety of 

habitats for different organisms. 

Furthermore, it acts as a medium of 

concentrating nutrients and contaminants 

that can contribute as a source for existing 

organisms in aquatic environment. The 
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metals are present in a compartment and 

may suffer remobilization to the water 

column. Some of these metals are essential 

nutrients to the biota, whereas other metals, 

in higher concentrations, may cause toxic 

effects to the environment. Thus, the 

sediments are of utmost importance in 

environmental impact studies, as a record of 

permanent contamination effects.
1,2

 Because 

of the interdisciplinary of soils and 

sediments, different technique and 

methodology should be applied for their 

characterization. 

Texture of soil and sediments refers to 

clay, silt and sand proportion, which indicate 

its consistence characteristics. From these 

fractions, clay is the one that has the largest 

contact surface and represents the larger 

part of the solid phase. Clay also has the 

ability to complex or adsorb metals due to its 

large surface area. Sandy soils and sediments 

have a granular consistence and present high 

water permeability. Soil and sediments 

classified as silt present an intermediate 

granulometry between clay and sand, and are 

generally erodible. Silt does not aggregate 

particles like clay and has small and light 

particles.
3 

The conventional methodology for texture 

determination in soils and sediments is 

densitometry.
4
 In this method the sample is 

diluted in NaOH and water and the 

measurement with hydrometer is performed. 

Unfortunately, it is a slow and laborious 

methodology, besides the waste it generates 

and the destruction of the original samples.
5
 

Most of the soil and sediment 

constituents can be identified and sometimes 

quantified by the  data from different 

spectroscopic techniques.
6
 The main 

constituents that influence its spectral 

behavior are the organic matter, iron oxides, 

mineralogy, clay content and moisture. 

Certainly, soil and sediment analysis 

techniques that are faster, cheaper and allow 

simultaneous determination of their 

physicochemical parameters are more 

advantageous. Besides, in the last years 

laboratory instrumentation and the feasibility 

of multivariate statistical methods have 

advanced and new alternatives to traditional 

methodologies conducted on soil and 

sediment analysis could thus be developed.
7-

10
 

Spectroscopic techniques like flame 

atomic absorption spectroscopy (FAAS)
11

 and 

energy dispersive X-ray fluorescence 

(EDXRF)
12

 are commonly employed for the 

determination of metallic ions concentration 

in soils and sediments, including recent 

applications with portable XRF in field.
13

 

Photoacoustic spectroscopy (PAS),
14

 can be 

also applied to study the optical absorption 

spectra of soils.
15

 For FAAS analysis an acid 

digestion of the samples is necessary, 

otherwise, for EDXRF and PAS, the samples 

can be analyzed in powder form after minor 

preparation. These techniques are not 

conventionally used for texture 

determination. However, it is known that 

metals use to have a greater affinity for 

smaller particles and organic compounds, i.e. 

for clay sediments,
16

 but it depends on 

geochemical conditions.  

In the case of EDXRF, the grain size and 

organic matter (OM) content related to light 

elements influence the background and 

enhance the scattering peaks in the spectra.
17

 

For example, Rayleigh and Compton 

scatterings contain information about the 

average atomic number, particle size and 

sample density.
18

 In the case of PAS, 

attention should be paid to the effect of 

particle size on photoacoustic (PA) signals 

when powder samples are measured. 

Previous studies have indicated that the PA 

band intensities increase with a decrease in 

particle diameter and that the band 

intensities ratios are not constant for 

particles of different diameter.
19

 

Because sediment is a complex mixture 

and the spectra obtained are equally 

intricate, multivariate analysis techniques 

could be applied to extract implicit 

information in the spectra data. Therefore, 

the magnitude of complex problems that are 

solved by spectroscopy could be increased by 

the use of multivariate analysis methods.
20,21

 

Multivariate statistical methods are useful for 

spectra separation based on non 
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characteristics information (implicit 

information). In this case, the application of 

unsupervised methods, like principal 

component analysis (PCA) and Hierarchical 

Cluster Analysis (HCA) are appropriate. 

HCA is performed through the 

determination of distances among the 

sample data, which can be calculated 

considering the closest K-neighbor or mean 

of the samples. The data can be either the 

original (scaled or centered on the mean) or 

the scores generated by the PCA. A numeric 

routine is applied with the objective of 

sample classification, dividing a set of 

observations into homogenous groups 

according to some criteria. The technique is 

based on distance calculations and the 

results plotted in a dendogram, which 

summarize the information.
22

 

PCA is applied to standards recognition, 

explaining the discrepancies between a large 

number of correlated variables. PCA is also a 

dimension reduction technique, in which 

orthogonal transformations in the data are 

performed to obtain linear combinations of 

the original variables. The new set of 

variables, called principal components (PCs), 

is smaller than the original one and the PCs 

are uncorrelated, retaining most of the 

variation in the first few components.
7
 Its 

representation in score plots is very useful as 

a display tool for examining the relationships 

between objects, looking for groups and 

trends, sorting out outliers. The loading plots 

display the variables that are responsible for 

the samples classification.  

Besides the samples classification, it is 

possible to quantify the properties of interest 

using multivariate regression methods, 

starting from the values obtained from the 

conventional methodology.
23 

To do this a 

very useful method is Partial Least Square 

(PLS) regression.  

PLS regression is a well-known factor 

analysis applied for parameters prediction, 

on which is established a quantitative 

relationship between the set of instrumental 

responses (for example, spectral data) and 

one or more physical or chemical properties 

of the samples (in this study, grain size), 

developing a mathematical model which 

correlates such relationship. This procedure 

involves two steps: calibration and validation. 

The calibration step establishes a relation 

between the data matrix X (instrumental 

signals, independent variables) and the 

known samples properties from reference 

samples (dependent variables) organized in Y 

matrix. The validation allows verifying if the 

model is capable to predict the properties of 

new samples.
24

 

The main aim of this study is to propose 

an alternative methodology for texture 

characterization of surface sediment 

samples, assessing the combination of 

spectroscopic analytical techniques with 

multivariate analysis. Specifically, PCA and 

HCA were employed for classification and PLS 

for quantification of clay and sand textures 

using FAAS, EDXRF and PAS data. 

 

2. Experimental 

 

2.1. Study area and collection of 

sediment samples 

 

The study area is located at the Itaipu 

Lake, at the border of Brazil and Paraguay. 

This lake is one of the largest dams in the 

world and its primary objective is to generate 

electric energy. In addition, the flooded area 

has multiple uses: navigation, recreation and 

tourism, fisheries, industrial water 

abstraction, and urban and agricultural 

irrigation. 

The samples were collected from nine 

points along the Itaipu Lake (Figure 1). These 

points are touristic places, known as artificial 

beaches.  Surface sediments (depth 0–5 cm) 

were collected using plastic bottles. On 

return to the laboratory, the sediments were 

stored in the dark at 4 °C before being air-

dried at room temperature (25 ± 1 ºC) for 2 

weeks and sieved through a 70-μm mesh.25
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Figure 1. Map from the selected sampling sites (http://maps.google.com) 

 

2.2. Instrumentation 

 

The quantification of metallic ions was 

carried out using FAAS equipment from 

Varian, model SpectraAA-220, equipped with 

hollow cathode lamps and deuterium lamp 

for background correction. 

The samples were prepared for pseudo-

total ions extraction. Metals can be bound to 

various phases of the sediment: either 

weakly adsorbed to surface particles like clay 

and humic acid or strongly bound to the 

matrix, commonly formed by aluminum 

silicates. Still exist the intermediate phases 

bound to carbon, to iron and manganese oxy-

hydroxy, connected to the OM and also with 

sulfides. Metals in these phases are weakly 

bound and could be easily displaced to the 

water column generating contamination 

risks. However, metal bound to oxide and 

refractory materials, which make up the 

mineral crystalline structure, are imprisoned 

by extremely strong binding force which 

cannot be broken by biota metabolic 

activities. So, metals occluded in this phase 

are in minor quantity, do not contributing 

significantly to the sand fraction in which 

they are bound.
26, 27

 Metal interactions with 

sediment, in the biogeochemical cycle, is 

strongly affected by particle size. Elements 

from anthropogenic and natural origin are 

concentrated in silt and clay fractions, whose 

granulometry is below 63 µm. Therefore, a 

drastic digestion of the sediment is not 

necessary to establish its metal content, since 

the metal portion present in the crystalline 

lattice of the silica particles does not 

contribute significantly to the total content of 

metallic elements in the sediments.
28 

All samples were prepared in triplicates. 

Analytical grade reagents were used in the 

study. The analysis was accomplished 

employing analytical curves by means of 

analytical standards. The solutions of metal 

ions (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) 

were made by diluting a stock standard 

solution of 1000 mg L
-1

 (J. T. Baker Instra 

Analysed, Mexico City, Mexico) in ultrapure 

water (TKA Genpure UV, model nº 08.2205). 

The methodology used in the extraction of 

pseudo-total ions was realized with 

concentrated analytical-grade HNO3 and H2O2 

(30 % v/v).  

Approximate 0.5 g dry sediment sample 

was put into a glass vessel, and 15 mL 

concentrated HNO3 was added. The glass 

vessel was heated at 60 °C for 4 h. Another 8 

mL H2O2 (30 % v/v) was added to the glass 

http://maps.google.com/
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vessel and maintained at 60 °C for 2 h. After 

cooling, the digested sample was decanted 

into a glass tube and diluted to 50 mL with 

deionized water.
29 

 

Energy Dispersive X-ray Fluorescence 

spectrometer (Shimadzu EDX 700), with Rh 

tube and Si(Li) detector, was used. 

Measurements were performed in vacuum 

with Zr filter at 50 kV, 500 µA and 3g of 

samples in powder form were placed in XRF 

cups covered with 2.5 µm Mylar film for 100 s 

irradiation time. 

The PAS experiments were performed 

using a spectrometer consisting of a 1000 W 

xenon arc lamp (Oriel Corporation, model 

6269), the radiation of which was modulated 

by a variable speed chopper (Stanford 

Research Systems, model SR540). A 

monochromator (Oriel, model 77250), in 

combination with the appropriate absorption 

filters, was used for wavelength selection and 

to eliminate higher order diffraction. The 

beam leaving the monochromator was 

directed into a home-made PA cell, a small 

gas-tight enclosure with a condenser 

microphone (Bruel and Kjaer, model 4392) 

mounted in one wall. Changes in sample 

temperature cause alterations of the 

pressure in the enclosed gas, which are 

subsequently converted to an electrical signal 

by the microphone. The signal was pre-

amplified and fed to a lock-in amplifier (SRS, 

model SR830), which synchronizes the 

photoacoustic signal with the reference pulse 

from the chopper. All the photoacoustic 

spectra were obtained at a modulation 

frequency of 16 Hz. The lock-in is connected 

to a microcomputer that controls all the 

instrumentation. The PA signal was rationed 

by the signal of carbon black, to eliminate the 

spectral variation of the illumination source. 

To improve accuracy, we have repeated all 

measurements three times. 

 

2.3. Grain Size, pH and OM 

Determination 

 

Texture determination of sediment 

samples (e.g. silt, sand, clay) was performed 

using densitometry.
4,24

 In the specific case of 

these samples, the fraction of silt was small 

and any sample was classified in this 

category. So, in this study, were explored clay 

and sand fractions. OM content was 

determined gravimetrically.
25,30

 One gram of 

each sediment sample was combusted in a 

furnace at 500 ºC for 4 h to determinate 

weight loss on ignition. Total organic carbon 

(TOC) content was calculated by the 

empirical formula Van Bemmelen factor: TOC 

= OM/ 1.724. The pH of samples was 

determined by estimating the activity of H
+
 

ions in the suspension of the sediment. So, 8 

cm
3
 of sediment were transferred to a beaker 

(50 mL) with 20 mL of CaCl2 10
-2

 mol L
-1

 to 

maintain the ionic equilibrium of the 

solution. The solution was stirred for 15 

minutes with the aid of a magnetic stirrer and 

reading was done by using a pH meter 

previously calibrated with buffer solutions pH 

7.0 and 4.0. 
25

 

 

2.4. Statistical analysis 

 

In this study three different data sets for 

PCA and PLS evaluation, were used: (a) 

metallic ion concentration, with pH and OM 

results previously obtained
25

; (b) EDXRF 

spectral data and (c) PAS spectral data.  

For the physicochemical parameters were 

constructed a 9 x 11 matrix of collected 

samples versus concentration values of Al, 

Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, pH and OM. 

Auto-scale pre-processing was used in this 

case, and the results were displayed in bi-

plots. The representation of the scores and 

loadings in the same graphic is called bi-plot. 

Several PCA and HCA models were 

performed with EDXRF spectra, in different 

energy ranges(0 - 40 keV, 0 – 7.5 keV, 7.5 - 20 

keV and 20 - 40 keV). However, the most 

significant results were obtained with the 

complete spectra, consisting of a matrix of 27 

rows (9 samples measured 3 times) and 2048 
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columns (corresponding to the energy values 

from 0 to 40 keV).  

PAS spectra were evaluated in the 

wavelength range of 300 to 1100 nm and a 9 

x 800 matrix was used. Both PAS and EDXRF 

spectra were preprocessed using mean 

center. The PLS regression were performed 

with the best PCA models. The calibration set 

was composed by seven samples and the 

external validation by two samples, numbers 

4 and 5. 

All statistical analysis and calculations 

were performed with software Matlab with 

PLS ToolBox version 5.8. 

3. Results and Discussion 

 

3.1. PCA with metallic ion concentration, 

pH and OM 

 

Metallic ion concentration, granulometry, 

pH and OM values were determined in a 

previous study
25

. 
 
Results of the analysis of 

physicochemical parameters of sediment 

samples are listed in Table 1. 

 

 

Table 1. Physicochemical parameters of superficial sediment in Itaipu Lake (adapted from 

reference 25) 

Points 

 

Granulometric Fraction (g kg
-1

) pH OM (%) 

Sand  Clay  Silt   

1 704 248 48 6.63 3.07 

2 358 477 165 5.91 12.19 

3 910 89 1 7.20 1.41 

4 174 670 156 6.98 7.36 

5 765 211 24 5.31 3.80 

6 156 819 25 6.06 11.16 

7 72 782 146 6.46 13.92 

8 838 144 18 5.79 2.65 

9 294 596 109 6.88 10.48 

 

The PCA with the present data provided 

the classification into two groups in the first 

principal component (Figure 2). Comparing 

the samples texture classification obtained by 

densitometry, with the two groups of the 

PCA, the same division into clay and sand 

samples was observed. The explained 

variance was about 75% in the first two PCs. 

Samples 2, 4, 6, 7 and 9, grouped at the right 

side of the biplot, are considered to be 

composed mainly by clay particles (according 

to Table 1 results), showing the affinity of 

metals by clay sediment and consequently 

with those with higher levels of organic 

matter. 

 

3.2. PCA with EDXRF spectral data 

 

EDXRF spectra (Figure 3) present several 

kinds of information. Explicitly, the net area 

of the peaks is related to the concentration 

of each corresponding element. Implicitly the 

scattering peaks are related to matrix effects 

from the samples, and in this case, 

specifically with OM concentration and grain 

size. All the spectra are visually similar. They 

present small differences in the scattering 

regions and in the intensity of the main 

peaks. PCA is capable to identify and highlight 

these differences, allowing a direct 

interpretation of the characteristics of 

interest. 
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Figure 2. Biplot with pH, organic matter and metallic ion concentration obtained with FAAS 

 

 

Figure 3. EDXRF spectra from all the measurements of superficial sediment samples. The main 

elements and the Rayleigh and Compton scattering peaks from the Zr filter used in the X-ray 

tube, were identified. Different colors refers to each measurement of the samples 
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PCA was achieved with the complete 

EDXRF spectra. The score plot is illustrated in 

Figure 4a. PC1 explains ~99.3% of data 

variance, while PC2 explains ~0.1%. The 

loadings plot analysis (not presented) shows 

that the Fe peak was responsible for the 

classification, where the samples at right, in 

the positive direction of PC1, have a higher Fe 

concentration. In the PC2, the Ti peak was 

the one that influenced the separation. This 

score plot also exhibits the samples 

classification by grain size and OM content, 

i.e. samples in the positive side of PC1 are 

clayey and have a higher OM content. The 

samples in the negative side of this axis are 

sandy. This result is comparable to that 

reported by Förstner and Wittmann, (1981),
31

 

in which metallic ions have affinity to 

sediments with small grain size and high OM 

content. The HCA for the same data set used 

in the PCA is presented in Figure 4b. The 

separation into clay and sand samples is in 

accordance with the PCA, corroborating the 

results. 

 

(b) 

 

 

Figure 4. (a) Score plot from PCA analysis and  (b) Hierarchical Cluster Analysis plot, both  with 

EDXRF spectral data. The codes a, b and c refers to three measurements performed in each 

sample
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3.3. PCA with PAS spectral data 

 

PA spectra were obtained in the region 

from 300 to 1100 nm. Figure 5a depicts the 

spectrum for each sample. Here can be 

observed that there is saturation tendency of 

PA signal in spectra range of about 550 nm to 

300 nm. This is an indication of the presence 

of high OM concentration and iron-based 

compounds. Samples 1, 3 and 8 show a lower 

absorption in the wavelength range 300-700 

nm, indicating that they have a higher sand 

composition. The sand particles reflect the 

incident light, thus giving rise to a lower 

absorption and consequently a decrease of 

the photoacoustic signal. For the same 

reason those samples exhibit smaller baseline 

values. In the case of sample 5, in spite of 

being classified as sand by the conventional 

method (see Table 1), a different behavior is 

shown when compare to samples 1, 3 and 8. 

We believe that this behavior is due to its 

higher OM content and higher iron 

concentration (Table 1). The baseline value is 

related to the capacity of light absorption and 

heat retention by the samples. In order to 

eliminate this effect, this value was 

subtracted from each PA spectrum (see Fig. 

5b). The observed bands, in the near infrared 

(NIR) region (800-110 nm), are attributed to 

presence of iron-based compounds. It can be 

noted that samples 2, 9 and 5 show more 

defined peaks in the NIR region due to the 

higher content of iron.31 In the case of 

sample 7, despite its higher iron content, 

those peaks are not well defined, probably, 

because of its high OM content in relation to 

the Fe content (Table 1). These reasons may 

also explain the spectrum behavior of sample 

4 and 6 in the NIR region. In order to obtain 

additional information from the PA spectra, a 

multivariate analysis was performed. 

 

(a) 

 

      (b) 
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Figure 5. Typical photoacoustic spectrum of sediment samples from Itaipu Lake: (a) measured 

and (b) without baseline 

 

PCA was performed on the matrix data 

from the PA spectra, using mean center 

preprocessing. The PCA score plot (Figure 6) 

(with 99.90% of the total variance in the first 

two principal components) presents the 

sample separation. Two natural groups were 

formed in this two-dimensional space: the 

first group consisted of the sand sample on 

the negative side of the first principal 

component. The second group was formed 

with the clay samples on the more positive 

side of the first principal component. The 

second principal component plays a major 

influence on clay samples, as they are more 

disperse vertically. 

The examination of the loadings from the 

first two principal components suggested 

that the clay samples have a higher intensity 

in the PA spectra, what is confirmed in Figure 

6. 
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Figure 6. Score plot of the first two principal components using PAS spectral data 

 

3.4. PLS for texture quantification 

 

The quantification of sand and clay 

content in the samples were predicted by PLS 

regression with the three set of spectroscopic 

data for X matrix: physicochemical 

parameters (pH, OM and FAAS metal 

concentration); EDXRF spectra and PAS 

spectra. For Y matrix were used the texture 

values obtained by the conventional 

methodology (Table 1). The regression curves 

and the predicted values (samples 4 and 5) 

are presented in Figure 7. In this figure the 

error bars were generated by the PLS model 

based on the residues in the regression 

calculation. In the case of the calibration set, 

the residues were calculated by the leave one 

out process. For the validation set, the error 

bar is due to the residues in the regression 

calculation for the two points of external 

validation. The correlation coefficients for 

calibration of the regressions ranged from 

0.990 to 0.804. The relative deviation (RD) for 

prediction was calculated with respect to the 

measured values. Its RD values varied from 

3% to 7% for FAAS, except for the value 174 g 

kg
-1 

whose deviation was 73%. The RD ranged 

from 6% to 52% for EDXRF prediction and 

from 23% to 110% for PAS.  We believe that 

the high RD values are because of the low 

predictability of the PLS regression models, 

due to the fact that, the restrict number of 

samples do not make possible the 

satisfactory choice of calibration and 

prediction sets. The prediction was less 

accurate for PAS data, whereas the results 

were most satisfactory for FAAS and EDXRF 

evaluation. However, the results 

demonstrate the potential of the 

spectroscopic techniques for granulometry 

quantification. 
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Figure 7. PLS regression curves for sand and clay texture quantification obtained from FAAS 

concentration values, PAS spectra and EDXRF spectra. The error bars are generated by each 

PLS model 

 

4. Conclusions 

 

The texture of superficial sediments was 

classified indirectly using FAAS, EDXRF and 

PAS techniques in combination with PCA and 

HCA. The same classification into samples 

with major contents of clay and sand 

particles were obtained for all the applied 

spectroscopic methods. Scores plot indicates 

that the multivariate analysis can be used for 

qualitative classification of sediment texture 

either with spectral data of EDXRF or PAS, or 

with metallic ion concentration determined 

by FAAS.  

In addition, a quantitative prediction was 

performed with PLS regression and the 

results were satisfactory, especially for FAAS 

and EDXRF data. In the case of PAS, it was not 

possible to predict accurately the particle size 

values. The obtained PLS models, at this 

point, due to the limited number of collection 

points (only nine), could be considered as a 

regional modeling, i.e., the prediction models 

generated are limited and valid for the 

studied environment. However, a larger 

number of samples is necessary to 

implement the methodology and change the 

robust model statistically.  

Our results indicate that the combination 

of these tools (spectroscopy and multivariate 

analysis) allows to assess implicit information 

of the spectral data and to conclude that the 

presented methodology is feasible. 

Moreover, the texture classification and 

quantification could be implemented in soil 

analysis when these techniques are applied. 

However, the possibility of texture analysis 

by EDXRF or PAS, indirectly and combined 

with multivariate analysis, is simpler, faster, 

cheaper and non destructive, without 

residues generation compared with FAAS and 

other conventional methods. This opens up 

the possibility of performing fast 

characterization in soil and sediment 

properties with an environmentally friendly 

methodology and could be applied in several 

areas such as agriculture, geophysics and 

mineralogy. 
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