
 

Centenário da Mecânica Quântica

905

http://dx.doi.org/10.21577/1984-6835.20250078

This is an open-access article distributed under the 
terms of the Creative Commons Attribution License.

Rev. Virtual Quim., 2025, 17(6), 905-916 
©2025  Sociedade Brasileira de Química

aUniversidade Federal Fluminense, 
Campus Valonguinho, Instituto de 
Química, Departamento de Físico-
Química, Niterói-RJ, CEP 24020-141, 
Brasil

*E-mail: ltcosta@id.uff.br

Submissão: 31 de Agosto de 2025

Aceite: 10 de Dezembro de 2025

Publicado online: 19 de Dezembro de 2025

Uma Análise Sobre as Diferentes Formas de 
Representação de Orbitais 

On The Analysis of Different Orbital Representations 

João Guilherme S. Monteiro,a  Arthur C. P. G. Ventura,a  Luciano T. Costaa,*  

The rapid growth of computational chemistry has broadened the use of molecular orbitals in teaching, 
research, and technology. In most chemistry textbooks, molecular geometry, stability, and reactivity are 
explained in terms of the size and shape of valence orbitals. Students are often introduced to these ideas 
before formally studying quantum mechanics, which can lead to conceptual difficulties. This paper 
addresses some challenges arising from how orbitals are presented in introductory courses. A major 
source of misunderstanding may come from how orbital diagrams and figures are interpreted in teaching 
materials. To help clarify these issues, we discuss the meaning of radial probability distribution plots and 
present two different visual representations of the spherical harmonics—one widely used in chemistry 
education and another less familiar to students. We also compare standard methods of visualizing atomic 
orbitals, including contour maps, surface plots, isosurfaces, and density plots, highlighting their strengths 
and limitations for the use in the classroom. Finally, these tools are applied to the case study of bond 
dissociation in the molecular ion H2

+, showing how alternative representations can support a deeper and 
more accurate understanding of orbitals in chemical education

Keywords: Atomic orbitals; spherical harmonics; chemical bond; isosurface; density plot.

1. Introdução

Há exatos 100 anos nascia a mecânica quântica moderna pelas contribuições de Heisenberg1 
e Schrödinger,2 os quais certamente não imaginavam o quanto suas teorias impactariam a 
ciência e tecnologia. Alguns dos conceitos dessa teoria e suas interpretações viriam a ser 
debatidos por décadas. O orbital, conceito desenvolvido alguns anos mais tarde, desempenha 
papel fundamental na química e é o tema central deste trabalho.

Em química, a explicação de diversos fenômenos relacionados à estabilidade e à reatividade 
de moléculas é feita com base nos princípios da mecânica quântica. A química quântica 
(terminologia usualmente empregada para designar a aplicação da mecânica quântica em 
química) é uma subárea da físico-química e seu estudo possui uma série de pré-requisitos, 
principalmente disciplinas de cálculo e de álgebra linear. Os alunos, mesmo em disciplinas 
introdutórias de química geral, inorgânica e orgânica, são apresentados a definições de 
funções de onda, níveis de energia, princípio da incerteza de Heisenberg, entre outros. Tais 
conceitos constituem o arcabouço teórico empregado por químicos para explicar as diferentes 
transformações entre compostos. A linguagem derivada da química quântica é usada em 
substituição a uma argumentação fenomenológica (macroscópica) baseada na termodinâmica.3 
Isso se deve, em parte, à forma microscópica como a química enxerga os fenômenos à sua volta, 
procurando compreender o comportamento das moléculas e sua interação com o ambiente. 

A evolução das metodologias da química teórico-computacional permitiu explicar diversos 
processos químicos em nível molecular. A capacidade de calcular propriedades moleculares 
sem recorrer a nenhuma informação empírica, como nos métodos denominados de ab initio, 
tem feito parte cada vez mais do cotidiano da química.4 Essa evolução faz com que certos 
autores defendam o uso de modelos qualitativos e simples para explicar os fenômenos, em 
contraste com a formulação computacional, de maior complexidade. Roald Hoffmann discute 
a diferença entre o entendimento qualitativo versus quantitativo acerca de uma determinada 
propriedade.5 O rápido desenvolvimento da química computacional permite o cálculo de 
propriedades com acurácia muitas vezes superior à experimental. Porém, isso não significa que 
haja, concomitantemente, um entendimento qualitativo do fenômeno. A tentativa de entender 
qualitativamente os resultados computacionais e experimentais levou ao desenvolvimento 
de uma linguagem química independente, que pode ser chamada de “não observável”, com 
termos como “ordem de ligação”, ligações “covalentes” e “iônicas”, “cargas atômicas”, entre 
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outros.6 O termo “não observável” é usado em oposição 
à linguagem “observável”, isto é, feita com base em 
operadores hermitianos que representam matematicamente 
as grandezas mensuráveis (chamadas de observáveis na 
linguagem da mecânica quântica). 

A química procura explicações simples e intuitivas, 
que podem ser facilmente relacionadas com resultados 
experimentais. Como expressou Brian T. Sutcliffe:7

“Chemistry is about synthesis. Physical Chemistry, 
Chemical Physics, Theoretical Chemistry, though 
endlessly interesting in their own right to those who 
choose to practice them, are, for the vast majority 
of working chemists, simply aids to synthesis. They 
need not be direct aids, this would be too much to 
ask, but they must somehow aid in the rationalizing 
process by which a synthesis can be anticipated or 
its outcome understood. Traditionally the chemical 
bond has been a major element in this rationalizing 
process.”

A geometria, a estabilidade e a reatividade de moléculas 
são comumente explicadas por meio da análise do tamanho, 
da forma e da energia dos seus orbitais de valência. Mulliken, 
em 1932, denomina as funções de onda de um elétron de 
“orbital”.8 Ele também distingue entre orbitais atômicos e 
moleculares, dependendo de o movimento do elétron ocorrer 
em um campo gerado, respectivamente, por um ou mais 
núcleos, além dos demais elétrons. Nesse trabalho, Mulliken 
tinha como objetivo não apenas determinar a forma dos 
orbitais moleculares, como também usá-los para explicar 
as propriedades químicas dos compostos. 

O desenvolvimento da química teórico-computacional 
nas últimas décadas abriu caminho para o uso de orbitais 
não apenas de forma qualitativa, mas também quantitativa. 
Hoje, existem centenas de softwares que permitem o cálculo 
de propriedades eletrônicas de moléculas com base em 
modelos orbitais. Isso mostra a importância dos orbitais na 
interpretação das propriedades químicas dos compostos. 
Anna I. Krylov aponta que o químico se vê obrigado a 
raciocinar em termos de orbitais antes de aprender os 
fundamentos necessários de mecânica quântica:9

“Just as a small child, without understanding its 
grammar and rules, learns to speak his native 
language with great effectiveness, chemists learn 
how to speak orbitals before they learn quantum 
mechanics.” 

Grande parte dos livros didáticos de química geral, 
inorgânica e orgânica inclui alguma discussão sobre o 
conceito de orbital em seus capítulos iniciais, muitas 
vezes antecedendo ao conteúdo básico da disciplina. Essa 
apresentação é geralmente feita de forma superficial e 
qualitativa, pois o leitor-alvo ainda não foi introduzido ao 
formalismo elementar da mecânica quântica. Entretanto, 

a definição de orbital é necessária, pois fará parte do 
vocabulário usado na maior parte do restante do livro. 

A origem do termo orbital baseia-se no modelo atômico 
de Bohr-Sommerfeld da antiga mecânica quântica,10 em que 
os elétrons descrevem órbitas, semelhantes às dos planetas 
no sistema solar. Em mecânica quântica, a especificação de 
órbitas precisas é incompatível com o princípio de incerteza 
de Heisenberg, um dos fundamentos da teoria. Por essa 
razão, Mulliken afirma:4

“... an orbital means, roughly, something like an 
orbit; or, more precisely, something as much like an 
orbit as is possible in quantum mechanics”. 

Em livros de físico-química, orbitais são definidos 
apenas após a introdução dos conceitos elementares da 
mecânica quântica, como os postulados, solução do átomo 
de hidrogênio, etc. Nessas circunstâncias, o estudante já 
possui o mínimo necessário para entender, de forma simples 
e objetiva, o que é orbital, tal como definido por Mulliken.8 
Por exemplo, no livro de físico-química,11 de Atkins e de 
Paula, na página 326, os autores definem:

“An atomic orbital is a one-electron wavefunction 
for an electron in an atom”. 

Definições semelhantes são encontradas em livros de 
química quântica,12–15 alguns livros de química geral,16–18 
inorgânica19–22 e orgânica.23 Outros livros, entretanto, 
optam por tentar definir orbital de forma mais intuitiva, 
permitindo que o leitor com pouco ou nenhum conhecimento 
de mecânica quântica possa, no mínimo, realizar algum 
raciocínio prático usando a nova linguagem. No livro 
Química Geral, do autor Christian Braathen, uma seção 
inteira é dedicada à descrição da equação de Schrödinger 
e dos orbitais atômicos, afirmando que são conceitos 
fundamentais para o entendimento do átomo moderno.24 
Para tal, inicia-se a abordagem pela dualidade onda-partícula 
do elétron, culminando na frase:

“Hoje, os químicos não pensam mais em órbitas, 
onde os elétrons giram a certa distância do núcleo. A 
ideia de órbitas foi substituída pela ideia de orbitais”

Em seguida, o autor questiona: “Mas, então, o que 
são orbitais?”. Assim então definindo, segundo sua 
interpretação:

“Orbitais são regiões no espaço atômico onde existe 
maior ou menor probabilidade de se encontrar 
elétrons. Ou seja, um orbital é uma distribuição de 
possibilidades de se encontrar um elétron em função 
da distância do mesmo até o núcleo do átomo.”

Na versão em português do livro de Química Geral de 
Brady e Humiston, a primeira abordagem da definição de 
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orbital é realizada no capítulo sobre teoria atômica, assim 
descrito:25

“Schrödinger resolveu, matematicamente, uma 
equação chamada de equação de onda. Ele obteve 
um conjunto de funções matemáticas chamadas 
de funções de onda, que descrevem as formas e as 
energias das ondas eletrônicas. Cada uma dessas 
possíveis ondas é chamada de orbital. Cada orbital 
em um átomo possui uma energia característica e 
é visto como uma descrição da região em torno do 
núcleo onde se espera poder encontrar o elétron.”

O livro Química Geral, do autor John B. Russel, descreve 
na página 265:26 

“Os orbitais correspondem aos estados individuais 
que podem ser ocupados por um elétron em um 
átomo. (A escolha desta palavra é, algumas vezes, 
imprópria, porque a palavra orbital é derivada da 
palavra órbita usada por Bohr, mas não tem esse 
significado.) Por ora, é conveniente imaginar um 
orbital simplesmente como um nível de energia. 
Adiante (Seção 6.4), veremos que a palavra 
também corresponde à região do espaço de maior 
manifestação eletrônica”

As transcrições acima mostram que muitos autores 
definem o orbital como uma região do espaço onde há 
probabilidade de se encontrar um elétron. Tal entendimento 
também está presente em livros de química orgânica e 
inorgânica. No livro Química Orgânica do Solomons e 
Fryhle,27 os autores afirmam, na página GL-10, que orbital é 

“... um volume do espaço em torno do núcleo de 
um átomo onde existe uma alta probabilidade de 
se encontrar um elétron. Os orbitais são descritos 
matematicamente pelo quadrado das funções de 
onda...”.

Definição semelhante é encontrada no livro de autoria de 
Paula Y. Bruice.28 Alguns livros de química inorgânica, como 
os de J. D. Lee, também apresentam definições semelhantes 
às anteriores. Na pág. 6 do livro Química Inorgânica não tão 
concisa (tradução da quinta edição inglesa) o autor escreve:29

“No átomo de hidrogênio, o único elétron presente 
normalmente ocupa o nível de energia mais baixo, 
E_1. Nesse caso o átomo encontra-se no seu estado 
fundamental. A correspondente função de onda ψ 
descreve o orbital, ou seja, um volume do espaço no 
qual há uma grande probabilidade de se encontrar 
o elétron.” 

É possível distinguir, essencialmente, duas definições em 
curso. A primeira identifica o orbital como uma função de 

onda resultante da solução da equação de Schrödinger para 
um único elétron.11,12,16,17,19–21,23 A segunda define orbital como 
uma região espacial onde a probabilidade de “encontrar” o 
elétron é alta.24–29 Em um artigo recentemente publicado, os 
autores Márcio M. Lima e José L. P. B. Silva exploraram 
as origens e aspectos ontológicos envolvidos nessas duas 
definições.30 Eles defendem que os dois conceitos são 
igualmente válidos, tornando necessário conhecer ambos 
e empregá-los da forma que for mais conveniente. Tal 
perspectiva pluralista também é defendida por outros 
autores, como Labarca e Lombardi, que afirmam:31

“... the quantum world has no priority over the world 
of molecular chemistry: chemical entities do not need 
the support of quantum entities to legitimate their 
objective existence. From this perspective, orbitals 
exist in the ontology of molecular chemistry, in spite 
of the fact that they do not exist in the quantum 
world.”

Essa visão pluralista não é amplamente aceita e tem 
sido amplamente combatida por diversos pesquisadores.32–36 

O objetivo deste trabalho é elucidar alguns problemas 
relacionados à forma como os orbitais são apresentados 
aos alunos de disciplinas introdutórias de química. Parte 
das dificuldades em entender o conceito correto de orbital 
pode estar relacionada à má interpretação das figuras de 
orbitais apresentadas nos livros-texto e em artigos. Embora 
essas figuras contenham estruturas que encapsulam uma 
determinada região espacial, elas não correspondem 
aos orbitais, mas sim a representações da densidade de 
probabilidade. Mostraremos como essas imagens são 
produzidas e qual a relação entre elas e os orbitais. A ideia 
é manter a apresentação simples, porém formalmente 
correta, para que possa ser aproveitada por estudantes 
de diferentes níveis acadêmicos e por professores de 
diferentes especialidades. Na próxima seção, abordamos 
o conceito de orbital e densidade eletrônica em átomos 
hidrogenóides, estabelecendo o significado de “região 
com alta probabilidade de se encontrar o elétron”. Na 
seção 3, mostramos como criar imagens tridimensionais de 
harmônicos esféricos. Diferentes formas de gerar imagens 
de orbitais, normalmente encontradas em livros-texto de 
química, são apresentadas na seção 4. Uma breve discussão 
sobre representação de orbitais em moléculas é feita na 
seção 5. Por fim, as considerações finais são apresentadas 
na seção 6. Todos os códigos usados para gerar as figuras 
deste trabalho estão disponíveis gratuitamente no GitHub 
(https://github.com/jgsmonteiro/Orbital-Plot). 

2. Orbitais e Densidade Eletrônica

O formalismo matemático da mecânica quântica é 
apresentado nos livros didáticos usando uma série de 
postulados que introduzem o conceito de função de 
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onda, operadores, e o caráter probabilístico de medidas 
de uma grandeza física.12,14,37 Nessa estrutura axiomática, 
a confirmação da teoria é feita a posteriori, por meio do 
confronto dos resultados obtidos com os experimentos 
disponíveis. Nas palavras de Dirac:38 

“The justification of the whole scheme depends on 
the agreement of the final results with experiments”. 

Um dos postulados da mecânica quântica estabelece 
que o estado de um sistema físico é caracterizado por uma 
função de onda, que depende da posição e do tempo.12–14,37 
A equação de Schrödinger independente do tempo pode 
ser escrita como

	 	 (1)

onde Ĥ é chamado de operador hamiltoniano, contendo 
os operadores de energia cinética e energia potencial de 
todas as partículas que compõem o sistema. A equação (1) 
fornece como resultado um conjunto de autofunções {ψn} e 
autovalores de energia {En}. Em grande parte dos sistemas 
de interesse em química, n é um inteiro não negativo. 

A equação de Schrödinger independente do tempo (1) 
de átomos hidrogenóides (que contêm apenas um elétron, 
ex.: H, He+, Li2+, etc) pode ser escrita como:37

	 	 (2)

onde o primeiro termo representa a energia cinética do 
elétron de massa me, e o segundo é a energia potencial 
eletrostática de atração entre o elétron de carga –e e o 
núcleo de carga +Ze, sendo Z o número atômico. As 
constantes fundamentais ħ e ε0 representam a constante de 
Planck dividida por 2π e permissividade elétrica no vácuo, 
respectivamente. Os níveis de energia {En} dependem 
apenas do número quântico principal n e são dados pela 
expressão (3):12,14 

	 	 (3)

onde todos os termos entre parênteses são constantes 
fundamentais, cujos valores são tabelados e podem ser 
encontrados em tabelas de constantes físico-químicas.12–14 
A validade da solução apresentada pode ser verificada 
comparando os dados espectroscópicos disponíveis para o 
átomo de hidrogênio (Z = 1) com os valores esperados para 
transições entre diferentes níveis de energia (4):

	 	 (4)

onde λ é o comprimento de onda da radiação eletromagnética 
absorvida ou emitida, h é a constante de Planck e 

c é a velocidade da luz no vácuo. Os valores das 
transições energéticas calculados por meio da equação (4) 
apresentam um excelente acordo com o espectro do átomo  
de hidrogênio.

As funções de onda que surgem como soluções de 
(2) são indexadas por três números quânticos (n, l, ml), 
representando o número quântico principal, o número 
quântico azimutal (ou de momento angular) e a projeção 
do momento angular orbital no eixo z. As restrições nos 
números quânticos são: n > 0, 0 ≤ l ≤ n – 1, –l ≤ ml ≤ l, 
respectivamente. As soluções 

lnlmψ  são geralmente chamadas 
de orbitais atômicos. Neste contexto, orbitais atômicos 
são definidos como as soluções eletrônicas do átomo de 
hidrogênio. A solução ψ100 (n = 1, l = ml = 0) é chamada de 
orbital “1s”; a solução ψ200 (n = 2, l = ml = 0), de “2s”; ψ210 
(n = 2, l = 1, ml = 0) de “2pz”. Os orbitais denominados “2px” 
e “2py” surgem como combinações lineares de ψ211 e ψ21-1. 
Note que, na ausência de perturbações, todos os estados 
com o mesmo número quântico principal são degenerados. 
Logo, as soluções “2px” e “2py” ou ψ211 e ψ21-1 são igualmente 
válidas e possuem a mesma energia.

Como podemos interpretar os orbitais atômicos 
obtidos da solução da equação (2)? Para responder a esta 
pergunta, vamos definir a densidade de probabilidade ρ(r) 
como o módulo da função de onda ao quadrado, ou seja, o 
significado de ρ(r) segue do postulado de Born39 da mecânica 
quântica, que estabelece que a probabilidade dP(r) de se 
encontrar a partícula em uma região do espaço dV, em torno 
da posição r, é dada por (5):

	 	 (5)

O fato de o módulo ao quadrado da função de onda ser 
quadrado-integrável garante que a integral da equação (5) 
em todo o espaço converge a um valor finito. Se a função 
for normalizada, esse valor é igual a 1. A densidade de 
probabilidade definida acima depende da posição do elétron 
no espaço tridimensional, definida pelo vetor posição r. 
Podemos simplificar o problema ao definir a densidade de 
probabilidade radial, obtida pela integração sobre toda a 
dependência angular. Outro nome equivalente encontrado 
na literatura para essa densidade é a função de distribuição 
radial, uma vez que ela representa a distribuição radial da 
probabilidade de se encontrar o elétron. Matematicamente, 
obtém-se uma função que depende apenas da distância 
elétron-núcleo, r, e não da direção (6):

	 	 (6)

Note que a densidade de probabilidade radial, r2|Rnl(r)|2, 
depende dos números quânticos n e l, mas não de ml. A 
análise gráfica dessa função permite identificar as regiões 
com alta densidade eletrônica. Na Figura 1 são mostradas 
as densidades de probabilidade radial de alguns orbitais 
atômicos do átomo de hidrogênio. As regiões com maior 
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probabilidade de se encontrar o elétron são justamente 
as que possuem maiores densidades eletrônicas. Por 
exemplo, para um elétron no nível descrito pelo orbital 
1s, a maior parte da densidade eletrônica encontra-se no 
interior de uma esfera de raio r < 5a0, sendo o raio de  
Bohr a0 = 5,29 × 10–11 m. 

Analisando a Figura 1, é possível perceber que a 
densidade eletrônica do orbital 1s é desprezível a uma 
distância superior a 5a0. Já para o elétron no nível 3s, a 
região com alta densidade eletrônica encontra-se na região 
circular 7a0 < r < 20a0. Essa diferença entre as densidades 
eletrônicas dos níveis 1s e 3s nos permite inferir que o 
elétron no nível 3s é encontrado com maior probabilidade 
em regiões mais distantes do núcleo do que o elétron no 
nível 1s. É importante destacar que, em ambos os níveis, o 
elétron pode ser encontrado, por exemplo, a uma distância 
igual a 0,5a0; porém, essa possibilidade é maior em 1s do 
que em 3s. O orbital 2s, por sua vez, possui uma distribuição 
intermediária entre o 1s e o 3s. A região de alta densidade 
está localizada no intervalo 2,5a0 < r < 12,5a0.

Um detalhe importante a ser notado em algumas 
das densidades eletrônicas apresentadas na Figura  1 
é a presença de pontos em que a função é nula. 
Esses pontos são chamados de nós, ou nodos. Como 
ilustração, considere a distribuição radial do orbital 2s: 

( ) ( ) ( ) 0
2 23 /2 2

20 0 02 2 / r ar R r a r r a e− − = −  . Os nós podem 
ser determinados encontrando os valores de r > 0 tais que 
r2|R20(r)|2 = 0. Neste caso, há apenas um valor, que é r = 2a0. 
Já a distribuição 3s apresenta dois nós, aproximadamente 
em 1,9a0 e 7,1a0. A quantidade de nós radiais em um orbital 
com número quântico principal n é de n – 1. 

Os máximos da distribuição são determinados pelos 
valores de r que satisfazem a equação d(r2|Rnl(r)|2)/dr = 0. 

Esses máximos representam os pontos em torno dos quais 
há maior probabilidade de o elétron se encontrar. Para o 
nível 2s, há dois máximos localizados em r = 0,746a0 e 
r = 5,236a0 (ver Figura 1), sendo o primeiro um máximo 
local e o segundo, global. 

A probabilidade de se encontrar o elétron em uma região 
esférica pode ser obtida integrando a equação (6). Por 
exemplo, para o orbital 1s, nota-se que o elétron se concentra 
a uma distância r < 5a0. A probabilidade de se encontrar o 
elétron nessa região pode ser calculada através de: 

	 	 (7)

Logo, a probabilidade de encontrar um elétron no estado 
fundamental do átomo de hidrogênio em uma esfera de raio 
5a0 é de 99%. Cálculos semelhantes podem ser feitos para 
os demais orbitais. Para o orbital 2s, a probabilidade de 
encontrar o elétron na região 3a0 < r < 8a0 é 

	 	 (8)

Para um elétron 2p, na região delimitada por a0 < r < 8a0, 
a probabilidade é 

	 	 (9)

Os exemplos acima demonstram que a probabilidade de 
se encontrar o elétron em uma dada região é calculada a partir 
da densidade eletrônica, ou densidade de probabilidade. 
Graficamente, a probabilidade de o elétron se encontrar 
em uma dada região é igual à área sob a curva. Os orbitais 
(funções de onda) são usados para calcular a densidade 
eletrônica, no entanto, é esta última que, de fato, é usada 
nos cálculos das propriedades atômicas e moleculares. A 
função de onda representa a amplitude de probabilidade, 
pois é usada como entrada no cálculo da densidade. É 
importante lembrar que, ao contrário do que ocorre com 
ρ(r), a função de onda pode assumir valores negativos ou 
imaginários. A Figura 2 mostra, em um mesmo gráfico, o 
orbital 2s (ψ200) junto com a raiz quadrada da densidade de 
probabilidade |ψ200|2 ao longo da direção z. Como a função 
de onda ψ200 é esfericamente simétrica, ela tem a mesma 
forma em qualquer direção espacial. É possível notar que 
ψ200 apresenta regiões positivas e negativas, indicando uma 
mudança de fase de 0 para p. Por outro lado, |ψ200|2 é sempre 
positiva. No orbital 2s, o nó ocorre por consequência da 
forma da função radial R20(r). 

Figura 1. De cima para baixo, densidades de probabilidade radial dos 
orbitais 1s, 2s e 3s do átomo de hidrogênio
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Para finalizar esta seção, destacamos que a densidade 
de probabilidade (eletrônica) determina as regiões de maior 
probabilidade de o elétron se encontrar. A análise gráfica 
da densidade radial permite identificar as regiões de alta 
densidade eletrônica. Entretanto, o orbital não é a região, 
mas sim a função de onda usada para determinar a 
densidade eletrônica! 

3. Representações Polares dos Harmônicos 
Esféricos

Na seção anterior, mostramos que a densidade de 
probabilidade radial é usada para determinar as distâncias 
em relação ao núcleo, onde há maior ou menor densidade 
eletrônica. Porém, devido às integrais em θ e ϕ presentes na 
equação (6), cuja integração nos limites indicados resulta 
no fator constante 4π, não temos informações sobre a 
distribuição angular do elétron em torno do núcleo. Para 
os subníveis s, esfericamente simétricos, não há perda 
significativa de informação no cálculo da distribuição 
radial. Para os demais subníveis, entretanto, as informações 
contidas nos harmônicos esféricos são perdidas no cálculo 
da densidade radial. A parte polar dos orbitais atômicos é 
frequentemente apresentada em livros-texto por meio de 
representações polares.14

Como os harmônicos esféricos são funções das 
coordenadas angulares θ e φ, sua representação em 
eixos cartesianos não é trivial. A estratégia adotada nas 
representações polares da função de onda é a seguinte: para 
um determinado valor de (θ, φ), estima-se um raio R tal que 

( ) 2, |lm
lR Y θ φ∝ . Assim, podemos obter as componentes 

(x, y, z) usando as seguintes relações entre coordenadas 
cartesianas e esféricas: 

	 x = Rsinθcosϕ
	 y = Rsinθsinϕ	 (10)
	 z = Rcosθ

Essa metodologia foi usada para obter os harmônicos 
mostrados na Figura 3. É importante destacar que as imagens 
apresentadas não contêm nenhuma informação sobre a 
distribuição radial do orbital. O significado da distância 
da superfície até a origem foi arbitrariamente escolhido 
como sendo igual ao módulo ao quadrado do harmônico 
esférico ( ),lm

lY θ φ  na direção angular (θ, φ). As porções 
em vermelho e azul representam regiões em que a função 
é positiva e negativa, respectivamente. 

Os harmônicos esféricos mostrados na Figura 3 possuem 
uma característica em comum: são funções reais de suas 
variáveis, pois ml = 0. Por outro lado, os harmônicos esféricos 
com ml ≠ 0 são funções complexas. Se empregarmos o 
mesmo procedimento para gerar imagens dos harmônicos 

( )1
1 ,Y θ φ± , obteremos o resultado apresentado em (a) e 

(b) da Figura 4. Elas em nada se assemelham às imagens 
de px e py apresentadas nos livros-texto. Para obter px e py 
(Figura  4d), é preciso realizar as seguintes combinações 
lineares dos harmônicos esféricos ( )1

1 ,Y θ φ± : 

	 	
(11)

Os orbitais d(l = 2) também apresentam funções reais 
e complexas, dependendo do valor do número quântico 
ml. A função 2z

d  mostrada na Figura 3 é real, pois ml = 0. 
Entretanto, para as demais funções d é preciso fazer 
combinações lineares para eliminar a componente complexa: 

	 	 (12)

Outra forma equivalente de visualizar os harmônicos 
esféricos é por meio da contagem de nós ao longo das 
direções θ e φ. Uma esfera é construída e dividida em 

Figura 2. Função de onda e densidade de probabilidade do orbital 2s 
(n = 2, l – ml = 0) do átomo de hidrogênio ao longo da direção z. A 

densidade de probabilidade é positiva em todo o intervalo, enquanto a 
função de onda é negativa em valores de |z| > 2a0

Figura 3. Harmônicos esféricos correspondentes à parte angular dos 
orbitais (a) pz, (b) 2z

d  e (c) 3z
f . A quantidade de nós angulares é l – |ml|
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setores, separados por linhas latitudinais e longitudinais, 
de modo que ao longo dessas linhas: ( ), 0lm

lY θ φ = . Essas 
linhas formam círculos concêntricos dispostos ao longo 
da esfera. Os círculos latitudinais representam os nós ao 
longo de θ e sua quantidade é igual a l – |ml|. Já as |ml| linhas 
longitudinais representam os nós ao longo de φ. Assim 
como na representação polar, regiões em que a função é 
positiva ou negativa são diferenciadas pela coloração. A 
Figura 5 mostra a imagem de alguns harmônicos esféricos 
usando essa representação. As linhas brancas representam 
os zeros dos harmônicos esféricos.Y0

0 possui nenhum zero, 
logo a esfera é uniforme. Já Y1

0 possui um zero latitudinal, 
enquanto 1

1Y ±  possuem um zero longitudinal. 
A discussão apresentada nesta subseção demonstra que a 

representação tridimensional dos harmônicos esféricos não 

é única. A forma como enxergamos os harmônicos esféricos 
está fortemente atrelada à representação utilizada nos livros. 
Porém, existem outras formas equivalentes de representar 
o mesmo objeto matemático, como mostrado na Figura 5. 
Lembrando, ainda, que os harmônicos esféricos são funções 
matemáticas que aparecem em vários outros ramos da física, 
além da estrutura eletrônica de átomos e moléculas, como 
na teoria eletromagnética clássica.41 

4. Orbitais Atômicos

Para obter a densidade eletrônica incluindo a parte radial 
e angular, é preciso representar ρ(r) nas componentes x, y e z 
(ou r, θ e ϕ). Nesta seção, veremos algumas técnicas usadas 
para representar uma função tridimensional, como ρ(r) ou 
� �r r� � � � � . A grande dificuldade da representação da 
densidade eletrônica e da função de onda é que precisamos 
de quatro eixos para representar o valor da função em um 
ponto (x, y e z). Se fixarmos uma das coordenadas, podemos 
representar a função em um gráfico tridimensional. A 
escolha da coordenada a fixar é motivada pela simetria do 
sistema. Esse tipo de representação é chamado de density 
ou surface plot.42 A Figura 6 mostra a representação dos 
orbitais 1s (ψ100), 2s (ψ200), 2pz (ψ210) e 23

z
d  (ψ320) no plano 

x × z. Como os orbitais s são esfericamente simétricos, não 
há dependência da representação com o plano escolhido. 
Isto é, em qualquer um dos planos cartesianos xy, xz ou yz, 
a imagem será igual às (a) e (b) da Figura 6. Os orbitais 1s 
e 2s possuem uma amplitude de probabilidade concentrada 
em torno da origem. Essa amplitude decai exponencialmente 
a zero no caso do 1s. Já o orbital 2s possui um poço radial 
em r = 4a0, que se aproxima assintoticamente de zero 
quando r → ∞  . 

Os orbitais p e d dependem de ângulo e, portanto, 
são representados de forma diferente conforme o plano 

Figura 4. Representação de parte real dos harmônicos 
esféricos (a) ( )1 ,1Y θ φ+  e (b) ( )–1 ,1Y θ φ . As combinações (c) 

( ) ( )( )1 1, , / 2x 1 1p Y Yθ φ θ φ− += −  e (d) ( ) ( )( )1 1, , / 2y 1 1p i Y Yθ φ θ φ− += +  
são funções reais com l = 1, mas com ml indefinido

Figura 5. Representação alternativa dos harmônicos esféricos lm
lY , com 

l = 0, 1, 2, 3 e |ml| ≤ 1
Figura 6. Surface plot dos orbitais 1s (a), 2s (b), 2pz (c) e 3dz2 (d) ao 

longo do plano x0z 
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escolhido. Os orbitais 2pz (Figura 6c) e 23
z

d  (Figura 6d) 
são representados no plano xz. O orbital 2pz possui dois 
lobos, com amplitude de probabilidade positiva (em azul) 
e negativa (em amarelo) na Figura 6c. O orbital 2pz no 
plano  xy (Figura 7a) é identicamente nulo devido ao nó 
angular em θ = π/2. Porém, em um plano paralelo (z = ±1), 
ele apresenta um pico com amplitude de probabilidade 
positiva (Figura 7c, plano z = ±1) e negativa (Figura 7d, 
plano z = –1). 

A técnica de density plot, usada para gerar as Figuras 5 
e 6, também permite uma representação bidimensional por 
meio de curvas de nível, em que cada linha representa o 
conjunto de pontos em que a função tem o mesmo valor 
(amplitude). A representação dos orbitais mostrados na 
Figura 6, na forma de curvas de nível, é apresentada na 
Figura 8. Os valores destacados representam a amplitude 
da função de onda ao longo do contorno. Valores negativos 
da função de onda são representados por contornos 
tracejados. Nesse tipo de representação, os nós dos 
orbitais se tornam evidentes, como pode ser visto nas 
Figura 8c e Figura 8d. O espaçamento entre os contornos 
é uma informação importante nesse tipo de representação, 
principalmente se o objetivo é comparar orbitais com 
tamanhos muito diferentes. 

Uma forma alternativa de visualizar as curvas de nível 
é apresentada na Figura 9 para os orbitais 2s e 2pz. Os 
gráficos acima e na lateral representam a função de onda 
ao longo dos eixos x e z, respectivamente. A Figura 9a 
mostra que o orbital 2s possui a mesma forma em ambos 
os eixos, tornando-o invariante sob uma rotação do sistema 
de eixos. Já na Figura 9b, destaca-se a diferença da função 
de onda 2pz ao longo dos eixos x e z. A parte superior da 
Figura 9b mostra a função de onda 2pz ao longo do eixo x, 
isto é ( )2 ,0,0

zp xψ , que é identicamente nula. Já o gráfico 

à direita da Figura 9b mostra ( )2 0,0,
zp zψ , com extremos 

em z = ±2a0. 
A representação de orbitais ou da densidade eletrônica, 

sem fixar qualquer coordenada espacial, pode ser feita 
por meio do shape plot.42 Nesse tipo de representação, a 
forma da função é representada espacialmente escolhendo 
o conjunto de pontos (x, y, z) tais que |ψ(x, y, z)| = c, onde 
c é um valor pré-estabelecido. Esse tipo de representação 
é mais comumente denominado isosurface.43 Esse tipo de 
gráfico demanda um custo computacional maior do que as 
representações de densidade e superfície (density e surface 
plots).44 

A Figura 10 apresenta representações do orbital 23 ,
z

d  
com valores distintos do contorno c, obtidas pelo algoritmo 
de Marching Cubes.45 É possível perceber como a escolha 
do valor do contorno afeta a extensão da representação 
do orbital. Quanto menor o valor de c, maior é a extensão 
da função de onda. Valores muito altos implicam em uma 
figura com menos detalhes, como na Figura 10a. Por outro 
lado, diminuir consideravelmente o contorno pode produzir 

Figura 7. Surface plot dos orbitais (a) 2pz e (b) 23
z

d  no plano xy, do 
orbital 2pz (c) no plano xy e (d) no plano xy

Figura 8. Curva de nível dos orbitais 1s (a), 2s (b), 2pz (c) e 3dz2 (d) no 
plano x0z. Contornos tracejados representam as amplitudes negativas 

da função de onda. Os valores indicados representam a amplitude 
da função de onda no contorno. Todos os valores estão em unidades 

atômicas

Figura 9. Curvas de nível dos orbitais 2s (a) e 2pz (b) no plano x0z. 
Os gráficos acima e à direita representam a função de onda ao longo 
dos eixos x e z, respectivamente. Todos os valores estão em unidades 

atômicas
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imagens com regiões sobrepostas, como nas Figura 10c e 
10d. O ideal é escolher um contorno que permita visualizar a 
estrutura nodal, como na Figura 10b. Em situações práticas, 
a escolha do contorno é feita por tentativa e erro.

Métodos de Monte Carlo permitem gerar figuras da 
densidade eletrônica através da distribuição espacial de 
pontos, como mostrado na Figura 11. A concentração de 
pontos é proporcional à densidade eletrônica em uma dada 
região, o que equivale à probabilidade de encontrar o elétron 
no elemento de volume correspondente. Os pontos foram 
coloridos de acordo com o sinal da função de onda, o que 
permite representar a fase (sinal) dos orbitais. É importante 
destacar que a densidade de pontos é proporcional à 
densidade eletrônica |ψ|2, e não ao orbital ψ. A coloração 
dos pontos é adicionada de forma ‘artificial’, apenas como 
recurso para mostrar regiões com fases contrárias. Esse tipo 
de representação também pode ser feita na forma de “foggy 
plot”.43 Mais detalhes sobre a utilização de métodos de 
Monte Carlo podem ser encontrados na literatura.46

Do ponto de vista pedagógico, as imagens da Figura 11 
podem ser interpretadas de forma intuitiva, facilitando 
a compreensão, por parte dos alunos, do significado da 
densidade de probabilidade. Vamos supor o seguinte 
experimento mental: considere um equipamento no qual 
a posição instantânea do elétron no átomo de hidrogênio 
pudesse ser determinada. Se uma série de medidas 
equivalentes fosse realizada, cada uma resultaria em 
uma posição distinta, que seria registrada em um sistema 
cartesiano de eixos. Após um número muito grande de 

medidas, obteríamos uma distribuição semelhante à 
Figura 11, associada à densidade de probabilidade do elétron 
no estado 24

z
d . O importante desse exercício é que o aluno 

compreenda que o elétron seria encontrado com maior 
frequência nas regiões de maior densidade de pontos (alta 
densidade de probabilidade). Outro ponto interessante que 
pode ser extraído da Figura 11 diz respeito à ausência de 
densidade eletrônica nas regiões onde há nós. A função de 
onda sofre uma mudança de fase igual a π quando troca de 
sinal, sendo nula. Portanto, a probabilidade de encontrar o 
elétron nos nós é nula. 

5. Orbitais em Moléculas

A discussão da representação de orbitais em sistemas 
com mais de um elétron vai além do escopo deste trabalho. 
Entretanto, há um sistema em particular, razoavelmente 
simples, no qual podemos aplicar as técnicas apresentadas 
nas seções anteriores. Na molécula de H2

+ a função de 
onda eletrônica do estado fundamental pode ser expressa, 
aproximadamente, como uma combinação linear de orbitais 
atômicos.14 Considerando uma base mínima, onde cada 
orbital atômico é composto apenas pela função de onda 1s 
do átomo de hidrogênio, podemos escrever que: 

	 	 (13)

onde ψ1s,a e ψ1s,b representam o orbital 1s centrado nos 
núcleos a e b, respectivamente. A integral de sobreposição 
S = 〈ψ1s,a|ψ1s,b〉 é uma função da distância internuclear R. O 
denominador ( )2 1 S+  garante que a função de onda ψg 
seja normalizada, isto é, 〈ψg|ψg〉 = 1. 

Figura 10. Isosurfaces do orbital 23
z

d  com diferentes contornos c. Em 
(a) o contorno é escolhido de tal modo que a função de onda tem metade 
do valor máximo. Nos demais casos, o orbital possui uma amplitude de 

probabilidade igual a (b) 1/5, (c) 1/10 e (d) 1/100 do valor máximo

Figura 11. Density plot do orbital atômico 24
z

d , gerado usando direct 
sampling com auxílio do PyVista.47 As cores são usadas para diferenciar 
regiões com fases opostas da função de onda. A densidade de pontos é 

maior nas regiões com maior densidade de probabilidade |Ψ|2
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Podemos empregar qualquer uma das técnicas anteriores 
para visualizar o orbital ψg. Uma representação usual de ψg 
consiste na fixação das coordenadas x = y = 0 e na análise 
da densidade eletrônica ρg = |ψg| ao longo do eixo z, que 
coincide com o eixo em que residem os núcleos. Tal gráfico 
é apresentado na Figura 12 considerando diferentes valores 
de R. É possível notar um aumento da densidade eletrônica 
entre os núcleos à medida que diminui R. A origem desse 
aumento da densidade eletrônica pode ser atribuída a uma 
redução da energia cinética do elétron, devido à diminuição 
do gradiente ∇ψg.48 

Outra representação possível dos orbitais é por meio de 
curvas de nível. Escolhendo o plano xz (fixando y = 0), obtém-
se a Figura 13 para diferentes valores de R. A uma distância de 
R = 8a0, a densidade eletrônica corresponde aproximadamente 
à densidade eletrônica de dois orbitais 1s concentrados em 
torno de cada um dos núcleos. Pela simetria da molécula 
de H2

+, a probabilidade de o elétron se encontrar em torno 
de qualquer um dos núcleos é a mesma. A diminuição 
de R para 6a0 provoca uma deslocalização da densidade 
eletrônica, resultando em um aumento da densidade na 
região internuclear, o que se torna ainda mais significativo 
em R = 4a0. Em uma separação de 2a0, os contornos de 
mesmo valor, mostrados na Figura 13a, permeiam ambos 
os núcleos. A versão tridimensional é apresentada na Figura 
14. As observações são as mesmas feitas anteriormente com 
relação ao aumento da amplitude de probabilidade na região 
internuclear com a diminuição de R. 

Podemos representar a função de onda através das 
isosurfaces, usando o algoritmo de Marching Cubes. A 
Figura 15 apresenta os orbitais em diferentes valores de 
R, com um contorno / 2gc max ρ= . A deslocalização 
dos orbitais é pouco perceptível visualmente em distâncias 
R  ≥ 4a0. Mas, em R = 3a0, é possível perceber que os orbitais 

atômicos se deslocam em direção ao núcleo oposto. Em 
R = 2a0, a função de onda está deslocalizada por ambos 
os núcleos, apresentando uma alta densidade eletrônica na 
região internuclear.

Por fim, é possível utilizar direct sampling, em 
conjunto com o PyVista, para gerar a densidade eletrônica 
ρg, conforme apresentado na Figura 16. Para distâncias 

Figura 12. Densidade eletrônica aproximada para a molécula de H2
+ em 

função da distância internuclear R. Os núcleos localizam-se em  
za = –R/2 e zb = R/2. As linhas pretas representam o valor da  

densidade eletrônica ρg(0, 0, z)

Figura 13. Curvas de nível da densidade eletrônica ρg(x, 0, z) no plano 
xz para diferentes distâncias internuclear R

Figura 14. Superfícies da densidade eletrônica ρg(x, 0, z) no plano xz, 
considerando diferentes distâncias internuclear R

Figura 15. Densidade eletrônica ρg(x, y, z) obtida usando o algoritmo de 
Marching Cubes. Os orbitais foram calculados em diferentes distâncias 

internucleares contorno c max g� � / 2
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curtas, a densidade de pontos é elevada em toda a região 
internuclear, o que impossibilita a distinção da posição de 
cada núcleo. Com o aumento de R, a densidade de pontos 
diminui na região entre os núcleos, concentrando-se nos 
extremos ±R/2. Para valores de R suficientemente altos, a 
probabilidade de encontrar um elétron na região internuclear 
se torna desprezível. 

6. Considerações Finais

Formalmente, o orbital é definido como uma função 
de onda, solução da equação de Schrödinger independente 
do tempo para um elétron. Suas propriedades decorrem 
diretamente dos princípios fundamentais da mecânica 
quântica e, portanto, sua interpretação deve estar em 
consonância com esses princípios. Neste trabalho, discutiu-
se como os orbitais atômicos são representados graficamente 
em livros didáticos e artigos científicos, destacando 
a importância de compreender os diferentes tipos de 
representações. Esse entendimento é essencial para que o 
aluno não crie falsos conceitos que podem se perpetuar ao 
longo de sua jornada acadêmica e profissional. 

As figuras de isosurfaces são bastante comuns e podem 
dar a impressão de que o orbital é uma região espacial na 
qual o elétron estaria confinado. Entretanto, tais superfícies 
são construídas a partir do conjunto de pontos no espaço 
em que a densidade eletrônica assume um valor constante, 
o que representa regiões de igual probabilidade. Logo, elas 
não delimitam uma região para o elétron. 

Orbitais são funções de onda usadas como amplitudes 
de probabilidade para o cálculo da densidade eletrônica. 
Enquanto as funções de onda podem assumir valores reais 
ou complexos, a densidade de probabilidade é sempre real 
e não negativa. A representação gráfica dos orbitais, por sua 
vez, emprega a parte real da função de onda ou combinações 
lineares que resultam em funções reais, como nos casos dos 
orbitais px, py, dx2–y2, dxy, dxz, dyz, entre outros. 

Reforça-se, portanto, a necessidade de explorar o 
significado das diferentes representações dos orbitais, uma 
vez que elas permitem traduzir a linguagem matemática 
da mecânica quântica em uma forma acessível. Dada a 
complexidade de interpretação da mecânica quântica, 
é preciso cautela na abordagem de certos conceitos, 
principalmente em disciplinas introdutórias. 
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