

- ^a Universidade Federal da Bahia, Instituto de Química, CEP 40170-280, Salvador-BA Brasil
- b Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, CEP 45029-094, Vitória da Conquista-BA, Brasil

*E-mail: jmdavid@ufba.br

Submissão: 26 de Fevereiro de 2025

Aceite: 2 de Julho de 2025

Publicado online: 8 de Julho de 2025

Antibacterial and Inhibition of Cholinesterase Activities of Volatile Organic Compounds from Schinus terebinthifolia Fruits

Atividade Antibacteriana e Inibitória da colinesterase de Compostos Orgânicos Voláteis dos frutos de Schinus terebinthifolia

Jennifer B. Pardo,^a Jorge M. David,^{a,*} Angelica F. Gomes^b

In this study, the chemical profile and antimicrobial activity, along with acetyl- and butyryl-cholinesterase (AChE and BuChE) inhibition properties, of volatile organic compounds (VOCs) derived from hexane extract of *Schinus terebinthifolia* Raddi fruits are investigated. The ripe fruits of this plant were collected in Salvador, Bahia, Brazil, dried, and extracted via maceration with hexane. The hexane extract and the first silica gel fraction, eluted by column chromatography (CC), were subjected to gas chromatographymass spectrometry (GC-MS) analysis. Detailed examination of the VOCs composition of hexane extract and derivatized compounds revealed the presence of fatty acids, predominantly palmitic acid (23.25%) and linoleic acid (16.05%), along with monoterpenes and steroids. In the antibacterial assay against *Escherichia coli*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus*, the VOCs demonstrated significant activity against *P. aeruginosa* and *S. aureus*, with a minimum inhibitory concentration (MIC) of 50 µg mL⁻¹ for both pathogens. Notably, the biological assay presented an atypical result against Gram-negative bacteria, which generally resist some antimicrobial agents. Furthermore, the cholinesterase inhibition assay indicated moderate inhibitory activity for the hexane and methanol extracts.

Keywords: Schinus terebinthifolia; volatile organic compounds; fatty acids; antimicrobial activity; Pseudomonas aeruginosa.

1. Introduction

Schinus terbinthifolia Raddi is a tree native to South America, belonging to the Anacardiaceae family, and is widely distributed throughout Brazil. This species holds significant commercial, cultural, and medicinal value. The fruits of *S. terebinthifolia* have been widely used as a spice in traditional Brazilian dishes and in various cuisines worldwide. The ripe fruits are commonly known as "pink pepper" or "aroeira" and are currently marketed as a complement to black pepper. Pink peppers from *S. terebinthifolia* and *S. molle* are similar to black peppercorns but milder, slightly sweet, and fruity. Since the first edition of the Brazilian Pharmacopeia in 1929, it has been recognized for its pharmaceutical properties. This plant has been reported mainly as an anti-inflammatory and antibacterial in folk medicine. Currently, it is part of the list of phytotherapeutics in the Brazilian "National List of Essential Medicines," used in treating cervicitis, vaginitis, and cervical vaginitis.

Concerning the chemical composition of the fruits of this species, there is significant scientific interest due to its chemical complexity associated with its antimicrobial activity and bioactive potential attributed to the presence of phenolic acids, terpenoids, and flavonoids.⁶ In general gallic acid,^{7–9} masticadienoic and masticadienolic acids,^{10,11} myricetin,^{12,13} quercetin,¹⁴ and galloyl glucosides¹⁵ are the most reported constituents for *S. terebinthifolia*.

Numerous studies have characterized the essential oil (EO) from leaves and fruits of this species, and mono and sesquiterpenes are the main constituents. In fruits, α -pinene is frequently reported as the main compound, ¹⁶ alongside minors such as α -phellandrene, α -carene, and limonene. ¹⁷ While these EO profiles vary significantly depending on seasonality, extraction methods, and geographical origin, ¹⁵ in the present study, the focus is on the volatile organic compounds (VOCs) of the hexane extract fraction, which shares overlapping terpenoid constituents with EO but may also include other lipophilic metabolites. Through the analysis of this understudied fraction, we aim to identify its unique chemical profile and bioactivity properties, thereby complementing the previous EO-centering research. The EO of *S. terebinthifolia* has demonstrated a broad spectrum of biological activities. The oils exhibit antimicrobial effects against *Escherichia coli*, *Staphylococcus*

aureus, Streptococcus mutans, Salmonella typhimurium, 18-20 and Candida albicans. 6 Studies employing Fatty acids (FAs), particularly palmitic acid, link their presence in mixtures as Gram-positive bacteria like Streptococcus agalactiae and Enterococcus faecium inhibitions.21 However, while EOs generally show good efficacy against Gram-positive bacteria, their activity against Gram-negative strains is limited due to the latter's restrictive outer membrane enriched with lipopolysaccharides.²² This is exemplified by *Pseudomonas* aeruginosa, a multidrug-resistant nosocomial pathogen, ^{23–25} emphasizing a need for novel antimicrobial strategies. Unlike EOs, which prioritize volatile terpenes, the hexane fraction's lipophilic profile may enhance synergistic interactions between FAs and terpenes, potentially overcoming Gramnegative resistance mechanisms. For instance, palmitic acid's membrane-disrupting properties and terpenes like α-phellandrene that impair efflux pumps could offer a dual-action approach against P. aeruginosa. By bridging the compositional gap between EOs and hexane-derived VOCs, this work aims to expand the biological potential of S. terebinthifolia beyond conventional EO applications.

In addition to their antimicrobial properties, plantderived VOCs have garnered attention for their potential to inhibit cholinesterase enzymes, which play a critical role in neurodegenerative disorders, such as Alzheimer's.²⁶ Cholinesterase inhibitors are a primary therapeutic strategy for managing Alzheimer's symptoms by enhancing cholinergic neurotransmission.²⁷ Recent studies have highlighted the cholinesterase inhibitory potential of terpenoids,28 which are prominent constituents of S. terebinthifolia fruits. Notably, α-pinene and limonene, major components identified in the species' volatile profile, have exhibited significant acetylcholinesterase (AChE) inhibitory activity in previous studies involving various t plants species.²⁹⁻³¹ Furthermore, the traditional use of S. terebinthifolia in folk medicine for cognitive enhancement, although poorly documented, provides an ethnobotanical rationale for exploring its neuropharmacological potential.

The present study investigated the chemical composition of the hexane extract (HE) and the VOC-enriched fraction of the hexane extract (VOC-HE) from *S. terebinthifolia* fruits. The antimicrobial activity against three strains of drug-resistant microorganisms and the inhibitory potential against acetyl- and butyryl-cholinesterase (AChE and BuChE) were also evaluated. This dual approach aims to contribute to exploring the biological and chemical relevance of *S. terebinthifolia* fruits, bridging its traditional uses with emerging applications in combating antimicrobial resistance and neurodegenerative disorders.

2. Experimental

2.1. General procedures

The solvents used in the preparation of the extracts, in the

partitioning, in the solubilization of the samples, the TLC/CC elution (hexane, ethyl acetate, chloroform, dichloromethane, and methanol) were of analytical grade from Anidrol (Diadema, SP), and Tedia (Rio de Janeiro, RJ). For column chromatography (CC) and TLC was employed silica gel 60 [of particle diameter of 0.063-0.200 µm from Aldrich (St. Louis, MO, USA] and 0.25 mm thickness silica gel 60 F254 plates from Merck (Darmstadt, Germany). The TLC was monitored by exposing the plates to UV light (254 and 366 nm – Spectroline model CM-10, Fluorescence Analysis Cabinet, Melville, NY, USA) exposure to iodine vapors. The column dimensions for CCs were 60 mm (diameter) \times 600 mm (length) with approximately 100 g of silica gel 60 (Sigma Aldrich, St. Louis, MO, USA). Gas chromatographymass spectrometry (GC-MS) analyses were carried out on Shimadzu mod. QP2010SE equipment (Kyoto, Japan) using an Rtx-5MS (5% diphenyl and 95% dimethylpolysiloxane) fused silica capillary column (30 m \times 0.25 mm, 0.25 mm of film thickness) and helium as carrier gas. The compounds were identified by comparing the samples' mass spectra with databases (NIST21, NIST107, and WILEY229) and a FAME standard (Aldrich). In the silvlation reactions, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCSI) reagents were acquired from Sigma-Aldrich® (St. Louis, MO, USA). For antimicrobial activity, 96-well plates, Muller Hinton broth from Merck® (Darmstadt, Germany), resazurin developer from Sigma Aldrich® (St. Louis, MO, USA), laminar flow hood and oven for bacteriological culture adjusted to 37 °C were used.

2.2. Plant material

Schinus terebinthifolia ripe fruits were collected in the surroundings of Salvador-BA, Brazil (13°0'16''S – 38°30'38''W) in November 2021, identified by Prof. MLS Guedes (Instituto de Biologia), and a sample species (voucher #109728) were deposited in the Herbário Alexandre Leal Costa of Universidade Federal da Bahia. The access to the specimen was registered in the Sistema Nacional de Gestão do Patrimônio Genético e Conhecimento Tradicional Associado (SisGen) under # A1E7156. The sample had the insects, traces of soil, and other deteriorated plants removed and dried at 40°C in an oven with forced air circulation until less than 10% drying loss. Subsequently, the sample was grounded using a blade mill to obtain a powder with moderately satisfactory granulometry.

2.3. Obtention of the VOCs from hexane extract (VOC-HE)

The hexane extract (HE) was prepared from 813.13 g of *S. terebinthifolia* fruits by maceration for 24 h (1 L 3x). The solutions obtained were filtered and concentrated under reduced pressure using a rotary evaporator to obtain 58.9 g of crude extract. This extract was submitted to a silica gel 60 CC, eluted in a polarity gradient (hex:EtOAc), yielding 16 fractions ($F_{Hex1-16}$) of 150 mL each. The first eluted

590 Rev. Virtual Quim

fraction F_{Hex1}, named VOC-HE (95:5; hex:EtOAc), was selected for GC-MS analysis and antibacterial activity due to its non-polar elution profile, indicative of volatile and lipophilic compounds known for their bioactive properties.

2.4. Derivatization method

The HE and VOC-HE (1 mg) were derivatized through the silvlation reaction. To the samples, 100 µL of TMSCI reagent and 50 µL of pyridine were added separately. The reaction mixture was heated in a water bath at 60 °C for 5 minutes, then cooled to room temperature. This derivatization step was critical to enhance the detection of polar or thermally labile compounds, such as fatty acids, alcohols, or oxygenated terpenoids, which are commonly reported in S. terebinthifolia but exhibit low volatility or instability under standard GC-MS conditions. By converting hydroxyl (-OH) and carboxyl (-COOH) groups into trimethylsilyl derivatives, the method improved compound volatility, chromatographic resolution, and detection sensitivity ensuring accurate identification of metabolites relevant to the study's antibacterial and cholinesterase inhibition assays. For instance, silylation prevents the degradation of heat-sensitive compounds like palmitic acid or terpenoid alcohols during vaporization, enabling a comprehensive chemical profile of the VOC-HE.

2.5. Gas chromatography-mass spectrometry (GC-MS) analysis

The HE and VOC-HE were injected into the GC, the injector was set at 290 °C, and the analysis was run with an initial temperature of 50 °C min⁻¹, ranging from 50 °C to 180 °C at a ratio of 15 °C min⁻¹, 180 °C to 230 °C at a ratio of 7 °C min⁻¹, and from 230 °C to 250 °C at a ratio of 15 °C min⁻¹, remaining at this temperature for 10 min. Subsequently, the temperature rose to 285 °C at a 4 °C min⁻¹ rate, thus remaining for 40 min. The detector temperature at the interface of the GC-MS system was maintained at 290 °C. Ionization was performed using electron ionization (EI) at 70 eV, and the mass spectra were acquired in full scan mode across 35 to 1000 Da.

2.6. Antibacterial activity

Two strains of Gram-negative (Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027) and one Gram-positive (Staphylococcus aureus ATCC 6538) were used to test the antimicrobial activity. The broth dilution technique was performed in microplates, and each bacterium was inoculated separately in sterile glass tubes, adding 5 mL of Muller Hinton broth (MHB) and incubated at 37 °C for 24 h; then a test was carried out in another tube with MHB with the same incubation conditions for 6 h to obtain the exponential phase. The turbidity test was conducted, adjusting each broth with bacteria with

saline solution to the 0.5 McFarland standard, equivalent to 3×10^8 CFU mL⁻¹ (MacFarland, 1907). Concentrations between 25-1000 µg mL⁻¹ samples were tested in triplicate, solubilized in dimethyl sulfoxide (DMSO), and MHB was added. After performing the microdilutions in 96-well plates were incubated at 37°C for 24 h. Chloramphenicol (40 µg mL⁻¹, 200 µL) was applied as a positive control, and DMSO (200 µL) as a negative control. Minimal Inhibitory Concentration (MIC) was determined by adding the developer resazurin (100 µg mL⁻¹), of which 30 µL was added to each well of the microplates. After 2 h, the appearance of the blue color represents the absence of growth, and the pink color represents the presence of bacterial growth.

2.7. AChE and BuChE inhibition test

Cholinesterase inhibitory activities of extracts and chromatographic fractions were performed using a 96-well microplate reader based on the method previously described.³² The solutions of the samples were prepared employing a 1 mg mL⁻¹ solution in MeOH grade HPLC, and as a positive control, eserine (physostigmine) in the same concentration. For the test, 140 µL of phosphate buffer (0.1 mol L⁻¹) pH 7.5 with 0.1% bovine serum albumin, 20 µL of the sample of the standard or MeOH were added to the wells of the microplates, in triplicate, in the case of the blank, and 20 µL of the enzymes (AChE/BuChE) 0.5 U mL⁻¹. After 15 min of incubation at 37 °C, 10 μL of 5-5'-dithiobis-[2-nitrobenzoic] acid (DTNB) 10 mmol L⁻¹ and 10 µL of acetylthiocholine iodide (ACTI) 15 mmol L⁻¹ was added, and then the reading was performed at 405 nm at time 0 and every 10 min until 60 min. The percentage of inhibition was obtained through the equation:

$$\%I = (AChE - AChI) \times \frac{100}{AChE}$$
 (1)

Acetylcholinesterase inhibitor (AChI) represents the activity obtained in the presence of the inhibitor and AChE/BuChE in the absence of the inhibitor.

3. Results and Discussion

The HE revealed (Table 1) a predominance of fatty acids (81.12%), particularly linoleic acid (41.04%), alongside terpenoids and sterols (6.99%); these constituents were identified based on the molecular ion and the fragmentations observed from the mass spectrum, compared with the de NIST 08 library data. The analyses were carried out with the silylated derivatives once this procedure permits the molecular ion of compounds of higher molecular masses could be detected. Just spectra of compounds showing $\geq 95\%$ similarity were considered. The identified chemical composition and relative abundance indicated that fatty

acids like linoleic and palmitic acids may contribute to antibacterial activity, while terpenoids (e.g., limonene) and sterols could promote cholinesterase inhibition.

The MS analyses of the VOC-HE from *S. terebinthifolia* fruits permitted to identify 22 constituents (Table 2), comprising 85.08% of the fraction. Palmitic acid (23.25%), linoleic acid (16.05%), margaric acid (13.19%), 1,3,5-cicloheptatriene, 3,7,7-trimethyl (5.03%), stearic acid (3.44%) and limonene (2,37%) were the major constituents of this fraction.

Previous studies of the VOCs of S. terebinthifolia fruits have reported the presence of a diversity of terpenes, such as α -pinene (29.16%), 33 δ -3-carene (46,67%), 4 β -myrcene (41%), ¹⁹ Δ3-carene, ³⁵ among others. Regarding the composition of the fatty acids, a previous study²¹ reported the prevalence of palmitic acid (15.98%), a result aligned with the present investigation. This consistency across studies reinforces palmitic acid's prominence in the species' chemical profile and its potential as a key bioactive agent. Also, in a study with ripe fruits, 5 palmitic acid (5.14%) was detected as the main FA in a hexane fraction of the fruits. However, the relatively high presence of saturated margaric acid (heptadecanoic) was not observed previously. This odd-chain FA commonly occurs as a trace, and the presence of this compound in high levels in fruits is important once saturated plasma phospholipid fatty acid (such as C14:0, C16:0, or C18:0) concentrations were significantly associated with an increased risk of coronary heart disease. However, concentrations of C15:0 and C17:0 FAs showed a significant inverse association with this incidence.³⁶ Despite their lower relative abundance, the identified terpenes, including α-phellandrene (0.68%), δ-carene (0.45%), and germacrene D (1.24%) detected in the present study, seem to be critical to the observed bioactivity, as the antimicrobial properties of these terpenoids are widely described.

The in vitro antibacterial activity of the VOC-HE (Table 3) obtained from the CC of the hexane extract of the S. therebentifolia fruits was determined using the dilution assay methodology. The VOC-HE exhibited better activity against Gram-negative bacteria P. aeruginosa and Gram-positive bacteria S. aureus and lower activity against E. coli. The VOC's antibacterial activity of S. terebinthifolia has been previously reported against Gram-positive bacteria such as Bacillus cereus (MIC of 0.852 mg mL⁻¹), Staphylococcus aureus (MIC of 1.704 mg mL-1) and Listeria monocytogenes (MIC of 6.820 mg mL⁻¹).¹⁸ Additional study demonstrated more significant activity against S. aureus in an assay performed using the disk diffusion method with an essential oil (EO) presenting predominantly a monoterpene chemical profile.³⁷ Furthermore, a study reported the antibacterial activity of two samples of S. terebinthifolia collected at different periods, indicating a difference in their bioactivity, with one sample being more active against all tested strains. In this study, the chemical profiles also showed differences: for the most active sample, the main components were identified as germacrene-D (21.0%) and α -phellandrene (18.2%), while the least active sample contained only 8.8% germacrene-D and an undetectable amount of α-phellandrene.³⁸ Comparison of different strains of Gram-positive and -negative bacteria from two VOC samples (leaves and fruits) that presented α-pinene, α-phellandrene, and D-limonene as major compounds reported more significant activity in both samples for Gram-positive strains [EO leaves: Bacillus megaterium

Table 1. Substances identified (% relative area) in hexane extract of Schinus terebinthifolia fruits

tR (min)	Compound	M ⁺	Molecular Formula	Similarity Index (SI)	% Area		
Monoterpene							
28.652	Linalool*	242	C ₁₀ H ₁₈ O	95	1.54		
Sesquiterpenes							
22.197	Cadinene	204	$C_{15}H_{24}$	97	1.30		
25. 421	β -eudesmol*	294	$C_{15}H_{26}O$	95	4.15		
Triterpenes							
60.482	β-sitosterol*	486	$C_{29}H_{50}O$	95	1.08		
61.919	Lanosterol	498	$C_{30}H_{50}O$	95	0.98		
Fatty Acids							
33.093	Palmitic acid*	328	$C_{16}H_{32}O_2$	97	13.74		
37.054	Linoleic acid*	352	$C_{18}H_{32}O_2$	97	41.04		
37.168	Asclepic acid*	354	$C_{18}H_{34}O_2$	96	5.06		
39.830	Oleic acid*	354	$C_{18}H_{34}O_2$	96	21.28		
40.326	Stearic acid*	356	$C_{18}H_{36}O_2$	97	1.90		
Total identified (% relative area)							
Unidentified (% relative area)							

^{*}identified in the silylated form

592 Rev. Virtual Quim

Table 2. VOC-HE composition of Schinus terebinthifolia fruits

tR (min ⁻¹)	Compound	M +	Molecular Formula	Similarity Index (SI)	Area (%)	
		Monoterp	enes			
4.35	1,3,5-cicloheptatriene, 3,7,7-trimethyl	134	$C_{10}H_{14}$	95	5.03	
4.53	β-Pinene	136	$C_{10}H_{16}$	96	1.89	
5.45	δ-Carene	136	$C_{10}H_{16}$	96	0.45	
5.74	<i>p</i> -Cymene	134	$C_{10}H_{14}$	96	1.16	
5.93	Limonene	136	$C_{10}H_{16}$	96	2.37	
15.53	Verbenone	150	$\mathrm{C_{10}H_{14}O}$	96	1.66	
16.17	α -Phellandrene	136	$C_{10}H_{16}$	94	0.68	
		Sesquiter	penes			
17.64	α-Copaene	204	$C_{15}H_{24}$	96	2.01	
18.14	β-Elemene	204	$C_{15}H_{24}$	95	0.52	
18.71	α-Gurjunene	204	$C_{15}H_{24}$	95	1.37	
19.12	Cariophyllene	204	$C_{15}H_{24}$	96	1.11	
19.52	α -Bergamotene	204	$C_{15}H_{24}$	96	1.27	
20.12	α -Humulene	204	$C_{15}H_{24}$	95	2.05	
21.07	Germacrene D	204	$C_{15}H_{24}$	95	1.24	
21.55	α-Muurolene	204	$C_{15}H_{24}$	94	0.92	
22.28	δ-Cadinene	204	$C_{15}H_{24}$	95	1.83	
		Fatty Ac	eids			
33.09	Palmitic acid*	328	$C_{16}H_{32}O_2$	97	23.25	
37.07	Linoleic acid	280	$C_{18}H_{32}O_2$	96	16.05	
39.36	Margaric acid	270	$C_{17}H_{34}O_2$	96	13.19	
39.84	Oleic acid*	354	$C_{17}H_{34}O_2$	97	2.39	
40.26	Stearic acid*	356	$C_{18}H_{36}O_2$	95	3.44	
		Triterpo	ene			
60.27	β-amyrone	424	C ₃₀ H ₄₈ O	96	1.20	
Total identified (% relative area)						
	Unidentified	(% relative a	rea)		14.92	

^{*}Identified in the silylated form

(35.33 mm), *Bacillus mojavensis* (23.67 mm) and *Clavibacter michiganensis* (37.33 mm)]. No activity was observed in any of the samples for Gram-negative strains (*Pseudomonas savastanoi* and *P.syringae* pv. *phaseolicola*).³⁹ Few reports have been found regarding essential oils that contain significant amounts of fatty acids and have been tested against Gram-negative bacteria.

Previous studies indicated that minor terpenes such as β-pinene, p-cymene, and verbenone (RA \leq 10% in the present study) present antimicrobial activities. β-Pinene destabilizes bacterial efflux pumps in multidrug-resistant strains, 40 while p-cymene inhibits quorum sensing in P aeruginosa. 41 Verbenone, exhibits inhibitory growth activity against $Listeria\ monocytogenes\ compromising$ bacterial viability and resistance mechanism. 42 Even uncommon sesquiterpenes like δ -cadinene suppress biofilm formation, disrupt the cellular structure, and compromise bacterial membrane integrity. 43

Thus, the combined action of low-abundance terpenes likely amplifies the VOC-HE's bioactivity. For example, α-copaene and α-humulene, though minor constituents are documented synergists in plant essential oils, inhibiting *Staphylococcus aureus* biofilm formation by disrupting extracellular polymeric matrix synthesis. Similarly, caryophyllene modulates bacterial resistance in *P. aeruginosa* by targeting efflux pump proteins. This synergy extends beyond monoterpenes once β-amyrone from *Rosmarinus officinalis* showed modest direct antibacterial activity against *S. aureus*. However, this triterpene in the presence of verbenone and 1,8-cineole suggests a cooperative mechanism that enhances overall bioactivity.

Notably, palmitic acid, the most abundant constituent in the studied fruits, has been previously considered responsible for antimicrobial activity in plant extracts. Its high relative abundance in the VOC-HE suggests a potential

role in the observed antibacterial effects, particularly against Gram-negative bacteria, which are typically less susceptible to fatty acid-mediated disruption due to their complex membrane structure.

Thus, while fatty acids dominate the chemical profile, the antimicrobial activity observed against *P. aeruginosa* and *S. aureus* likely arises from a dual mechanism: the fatty acids (e.g., palmitic acid) disrupting membrane integrity and the monoterpenes targeting virulence factors (e.g., efflux pumps, biofilms). This synergy aligns with studies showing terpene-fatty acid combinations exhibit broader-spectrum activity than individual components. 47,48

However, the observed activity against Gram-negative *P. aeruginosa* is noteworthy, as few studies link fatty acidrich extracts to such effects. For instance, acetone extracts of *S. terebinthifolia* (oleic acid: 38.74%) showed moderate anti-*Pseudomonas* activity (MIC 128 µg mL⁻¹). ⁴⁹ This finding suggests that abundant fatty acids like linoleic and palmitic acid in our sample may disrupt Gram-negative membranes or efflux pumps, warranting mechanistic studies. These results are interesting when compared with the bacteriostatic and bactericidal effect of the MeOH acidified extracts evaluated against the same microorganisms. ⁵⁰ The less polar extract showed higher activities.

Concerning AchE inhibition, *Schinus* spp. has already been reported with promising activity in inhibiting AChE. While *S. aroeira* and *S. longifolia* EOs presented AChE inhibition activity of approximately IC₅₀ of 20 µg mL⁻¹,^{51,52} this is the first report for VOCs enriched extract of *S. terebinthifolia* fruits. The moderate BuChE inhibition (enhanced at 60 min) may arise from terpenoids identified in the HE, as similar compounds in other plants inhibit cholinesterases via hydrophobic interactions with the enzyme's active site.²⁸ Notably, fatty acids like palmitic

acid have also been implicated in neuroprotective pathways,⁵³ suggesting a potential synergistic role between lipidic and terpenoid components in dual bioactivities. This dual antimicrobial-neuropharmacological focus is mechanistically cohesive: membrane-disrupting fatty acids could enhance bacterial susceptibility, while lipophilic terpenoids/sterols may penetrate blood-brain barriers to modulate cholinesterases. Future studies should isolate key compounds to clarify their individual and combined roles in both activities.

4. Conclusions

The volatile fraction of the hexane extract (VOC-HE) from *Schinus terebinthifolia* fruits was rich in fatty acids (palmitic and linoleic acids) and it demonstrated significant antibacterial activity against *Pseudomonas aeruginosa*, a Gram-negative pathogen with high clinical resistance. This rare Gram-negative targeting highlights its potential as a novel antimicrobial agent. The hexane and methanol extracts also showed moderate BuChE inhibition, suggesting neuropharmacological relevance linked to terpenoids/sterols. The dual bioactivity underscores the multifunctional potential of *S. terebinthifolia*'s lipophilic components, bridging traditional uses with applications against infections and neurodegenerative disorders. Further studies should isolate key compounds to clarify their mechanisms and synergies.

Acknowledgments

The authors thank CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (# 302848/2022-

Table 3. Minimum inhibitory concentration (MIC) of hexane fraction with VOCs (VOC-HE) *Schinus terebinthifolia* fruits against *Escherichia coli* (ATCC 8739), *Pseudomonas auruginosa* (ATCC 9027) and *Staphylococcus aureus* (ATCC 6538)

Microorganisms	MIC (μg mL ⁻¹)
Escherichia coli	100
Pseudomonas aeruginosa	50
Staphylococcus aureus	50

positive control: chloramphenicol (40 μg mL⁻¹)

Table 4. Percentage of inhibition (%I) of AChE and BChE for the hexane and MeOH extracts and eserine (standard) at times 30 min and 60 min

Amostra	% I ± DP* AChE		% I ± DP* BchE		
	Hex	41.72 ± 0.02	28.76 ± 0.01	58.57 ± 0.01	51.89 ± 0.01
MeOH	44.64 ± 0.01	36.82 ± 0.03	23.82 ± 0.20	49.94 ± 0.01	
Eserine	73.56 ± 0.70	87.67 ± 0.02	72.07 ± 0.10	92.26 ± 0.40	

^{*}The results are expressed as mean \pm standard deviation (n=3).

594 Rev. Virtual Quim

3), INCT Energia e Ambiente, and CAPES-Conselho de Aperfeiçoamento de Pessoal de Nível Superior (Finance code 001) for financial support and scholarship.

Bibliographic References

- de Oliveira, V. S.; Augusta, I. M.; Braz, M. V. da C.; Riger, C. J.; Prudêncio, E. R.; Sawaya, A. C. H. F.; Sampaio, G. R.; Torres, E. A. F. da S.; Saldanha, T.; Aroeira fruit (*Schinus terebinthifolius* Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. *Food Chemistry* 2020, 315, 126274. [Crossref] [PubMed]
- Migues, V. H.; David, J. M.; David, J. P.; Determination of polyphenols in: *Schinus terebinthifolius* Raddi bark extracts and chemometric analysis. *Analitycal Methods* 2020, *12*, 1478. [Crossref]
- Rosas, E. C.; Correa, L. B.; Henriques, M. das G.; Em Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Watson, R. R.; Preedy, V. R., eds.; Academic Press:Cambridge, MA, USA, 2019, cap. 28. [Link]
- Ministério da Saúde Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde. Departamento de Assistência Farmacêutica e Insumos Estratégicos. Relação Nacional de Medicamentos Essenciais Rename 2022 [recurso eletrônico] / Ministério da Saúde, Secretaria de 2022. [Link]
- da Silva, J. H. S.; Simas, N. K.; Alviano, C. S.; Alviano, D. S.; Ventura, J. A.; de Lima, E. J.; Seabra, S. H.; Kuster, R. M.; Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves. Natural Products Research 2018, 32, 1365. [Crossref] [PubMed]
- Uliana, M. P.; Fronza, M.; da Silva, A. G.; Vargas, T. S.; de Andrade, T. U.; Scherer, R.; Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. *Industrial Crops and Products* 2016, 83, 235. [Crossref]
- De Lima Glória, L.; De Souza Arantes, M. B.; De Faria Pereira, S. M.; De Souza Vieira, G.; Martins, C. X.; De Carvalho Junior, A. R.; Antunes, F.; Braz-Filho, R.; Vieira, I. J. C.; Da Cruz, L. L.; De Almeida Chaves, D. S.; De Paiva Freitas, S.; De Oliveira, D. B.; Phenolic compounds present *Schinus terebinthifolius* raddi influence the lowering of blood pressure in rats. *Molecules* 2017, 22, 1792. [Crossref] [PubMed]
- Cavalher-Machado, S. C.; Rosas, E. C.; Brito, F. de A.; Heringe, A. P.; de Oliveira, R. R.; Kaplan, M. A. C.; Figueiredo, M. R.; Henriques, M. das G. M. de O.; The anti-allergic activity of the acetate fraction of *Schinus terebinthifolius* leaves in IgE induced mice paw edema and pleurisy. *International Immunopharmacology* 2008, 8, 1552. [Crossref] [PubMed]
- Rosas, E. C.; Correa, L. B.; Pádua, T. D. A.; Costa, T. E. M. M.; Luiz Mazzei, J.; Heringer, A. P.; Bizarro, C. A.; Kaplan, M. A. C.; Figueiredo, M. R.; Henriques, M. G.; Anti-inflammatory effect of *Schinus terebinthifolius* Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. *Journal* of *Ethnopharmacology* 2015, 175, 490. [Crossref] [PubMed]
- Jain, M. K.; Bao-Zhu Yu; Rogers, J. M.; Smith, A. E.; Boger, E.
 T. A.; Ostrander, R. L.; Rheingold, A. L.; Specific competitive

- inhibitor of secreted phospholipase A2 from berries of *Schinus terebinthifolius*. *Phytochemistry* **1995**, *39*, 537. [Crossref] [PubMed]
- Vieira, M. N.; Costa, F. das N.; Leitão, G. G.; Garrard, I.; Hewitson, P.; Ignatova, S.; Winterhalter, P.; Jerz, G.; Schinus terebinthifolius scale-up countercurrent chromatography (Part I): HIGH performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 2015, 1389, 39. [Crossref] [PubMed]
- Ceruks, M.; Romoff, P.; Favero, O. A.; Lago, J. H. G.; Polar phenolic constituents from *Schinus terebinthifolius* Raddi (Anacardiaceae). *Química Nova* 2007, 30, 597. [Crossref]
- Abdel Bar, F. M.; Ibrahim, D. S.; Gedara, S. R.; Abdel-Raziq, M. S.; Zaghloul, A. M.; Nematicidal compounds from the leaves of *Schinus terebinthifolius* against root-knot nematode, meloidogyne incognita infecting tomato. *Natural Product Sciences* 2018, 24, 272. [Crossref]
- Johann, S.; Sá, N. P.; Lima, L. A. R. S.; Cisalpino, P. S.; Cota, B. B.; Alves, T. M. A.; Siqueira, E. P.; Zani, C. L.; Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis. Annals of Clinical Microbiology and Antimicrobials 2010, 9, 30. [Crossref] [PubMed]
- Cunha, A. B.; David, J. M.; Chemical composition, biological activities and uses of anacardiaceae species: an updated review. *Química Nova* 2024, 47, e-20230101. [Crossref]
- Barbosa, L. C. A.; Demuner, A. J.; Clemente, A. D.; De Paula, V. F.; Ismail, F. M. D.; Seasonal variation in the composition of volatile oils from *Schinus terebinthifolius* Raddi. *Química Nova* 2007, 30, 1959. [Crossref]
- Bendaoud, H.; Romdhane, M.; Souchard, J. P.; Cazaux, S.; Bouajila, J.; Chemical Composition and Anticancer and Antioxidant Activities of Schinus Molle L. and Schinus terebinthifolius Raddi Berries Essential Oils. Journal of Food Science 2010, 75, C466. [Crossref] [PubMed]
- Da Silva Dannenberg, G.; Funck, G. D.; Mattei, F. J.; Da Silva, W. P.; Fiorentini, Â. M.; Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innovative Food Science & Emerging Technologies 2016, 36, 120. [Crossref]
- Dannenberg, G. da S.; Funck, G. D.; Silva, W. P. da; Fiorentini,
 Â. M.; Essential oil from pink pepper (*Schinus terebinthifolius* Raddi): Chemical composition, antibacterial activity and mechanism of action. *Food Control* 2019, 95, 115. [Crossref]
- El-Massrry, K. F.; El-Ghorab, A. H.; Shaaban, H. A.; Shibamoto, T.; Chemical compositions and antioxidant/ antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. Journal of Agricultural and Food Chemistry 2009, 57, 5265. [Crossref] [PubMed]
- Ennigrou, A.; Casabianca, H.; Laarif, A.; Hanchi, B.; Hosni, K.;
 Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinus terebinthifolius

- Raddi) fruits. South African Journal of Botany 2017, 108, 407. [Crossref]
- Burt, S.; Essential oils: Their antibacterial properties and potential applications in foods - A review. *International Journal* of Food Microbiology 2004, 94, 223. [Crossref] [PubMed]
- Paz-Zarza, V. M.; Mangwani-Mordani, S.; Martínez-Maldonado, A.; Álvarez-Hernández, D.; Solano-Gálvez, S. G.; Vázquez-López, R.; *Pseudomonas aeruginosa*: patogenicidad y resistencia antimicrobiana en la infección urinaria. *Revista Chilena* infectología 2019, 36, 180. [Crossref]
- Strateva, T.; Yordanov, D.; Pseudomonas aeruginosa A phenomenon of bacterial resistance. *Journal of Medical Microbiology* 2009, 58, 1133. [Crossref] [PubMed]
- Wu, W.; Jin, Y.; Bai, F.; Jin, S.; Em Molecular Medical Microbiology; 2nd ed.; Tang, T.W.; Sussman, M.; Liu, D.; Poxton, I.; Schwartzman, J., eds.; Academic Press:Cambridge, MA, USA, 2015, cap 41. [Link]
- Rashed, A. A.; Rahman, A. Z. A.; Rathi, D. N. G.; Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: a review. *Molecules* 2021, 26, 1107. [Crossref] [PubMed]
- Gauthier, S.; Rosa-Neto, P.; Morais, J.; Webster, C.; World Alzheimer Report 2021: Journey through the diagnosis of dementia. *Alzheimer's Disease International* 2021. [Link]
- Min, S. L. S.; Liew, S. Y.; Chear, N. J. Y.; Goh, B. H.; Tan, W. N.; Khaw, K. Y.; Plant Terpenoids as the Promising Source of Cholinesterase Inhibitors for Anti-AD Therapy. *Biology (Basel)*. 2022, 11, 307. [Crossref] [PubMed]
- de Souza, A.; Cardoso Lopes, E. M.; da Silva, M. C.; Cordeiro, I.; Young, M. C. M.; Sobral, M. E. G.; Moreno, P. R. H.; Chemical composition and acetylcholinesterase inhibitory activity of essential oils of *Myrceugenia myrcioides* (Cambess.) O. Berg and Eugenia riedeliana O. Berg, Myrtaceae. *Revista Brasileira* de Farmacognosia 2010, 20, 175. [Crossref]
- Lima, A.; Arruda, F.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E.; Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae). Antioxidants 2024, 13, 728. [Crossref] [PubMed]
- Chu, M. H.; Liu, T. W.; Chen, P. H.; Chen, Y. H.; Tang, K. L.; Hsu, S. J.; Iskandar, B.; Yin, H. W.; Lin, M. H.; Lee, C. K.; Investigation of the acetylcholinesterase inhibitors of Mentha genus essential oils with in vitro and in silico approaches. *Industrial Crops and Products* 2025, 227, 120783. [Crossref].
- Atta-ur-Rahman; Parveen, S.; Khalid, A.; Farooq, A.; Choudhary, M. I.; Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from *Buxus papillosa*. *Phytochemistry* 2001, 58, 963.
 [Crossref] [PubMed].
- 33. Mysrayn Yargo de Freitas Araújo Reis; Luísa de Melo Xavier, A.; Ramos Marques de Souza, R.; Morais de Meideiros Ramalho, Í.; Nascimento, Y. M. do; Leite Ferreira, M. D.; Ponciano Goulart de Lima Damasceno, B.; Sobral, M. V.; Sampaio, F. C.; Pink pepper (Schinus terebinthifolius Raddi) essential oil: phytochemical composition and cytotoxic activity. Natural Products Research 2023, 39, 1910. [Crossref] [PubMed]

- Schimitberger, V. M. B.; Pratti, D. L. de A.; Cavalcanti, L. C.; Ramalho, V. F.; Costa, A. P. F. da; Scherer, R.; Kuster, R. M.; Ramos, A. C.; Silva, A. G. da; Volatile compounds profile changes from unripe to ripe fruits of Brazilian pepper (Schinus terebinthifolia Raddi). Industrial Crops and Products 2018, 119, 125. [Crossref]
- Maria Neto, R.; Di Fabio, E.; de Monroe Gonçalves, M.; Mamián López, M. B.; Figueiredo Angolini, C. F.; Carvalho Veggi, P.; Tempone, A. G.; Martin do Prado, J.; Lago, J. H. G.; da Silva, B. G.; Steam distillation, supercritical fluid extraction, and anti-Trypanosoma cruzi activity of compounds from pink pepper (Schinus terebinthifolius Raddi). Natural Products Research 2024, in press. [Crossref] [PubMed]
- Jenkins, B.; West, J. A.; Koulman, A.; A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. *Molecules* 2015, 20, 2425. [Crossref] [PubMed]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, F.; Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. *Industrial Crops and Products* 2015, 71, 197. [Crossref]
- Montanari, R. M.; Barbosa, L. C. A.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Exposure to anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. *Molecules* 2012, 17, 9728. [Crossref] [PubMed]
- Elshafie, H. S.; Ghanney, N.; Mang, S. M.; Ferchichi, A.; Camele, I.; An in Vitro Attempt for Controlling Severe Phytopathogens and Human Pathogens Using Essential Oils from Mediterranean Plants of Genus Schinus. Journal of Medicinal Food 2016, 19, 266. [Crossref] [PubMed]
- Lorenzi, V.; Muselli, A.; Bernardini, A. F.; Berti, L.; Pagès, J. M.; Amaral, L.; Bolla, J. M.; Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. *Antimicrobial Agents and Chemotherapy* 2009, 53, 2209. [Crossref] [PubMed]
- Snoussi, M.; Noumi, E.; Punchappady-Devasya, R.; Trabelsi, N.; Kanekar, S.; Nazzaro, F.; Fratianni, F.; Flamini, G.; De Feo, V.; Al-Sieni, A.; Antioxidant properties and anti-quorum sensing potential of *Carum copticum* essential oil and phenolics against *Chromobacterium violaceum*. *Journal of Food Science* and *Technology* 2018, 55, 2824. [Crossref] [PubMed]
- Scollard, J.; McManamon, O.; Schmalenberger, A.; Inhibition of Listeria monocytogenes growth on fresh-cut produce with thyme essential oil and essential oil compound verbenone. *Postharvest Biology and Technology* 2016, 120, 61. [Crossref]
- Qin, R.; Yang, S.; Fu, B.; Chen, Y.; Zhou, M.; Qi, Y.; Xu, N.; Wu, Q.; Hua, Q.; Wu, Y.; Liu, Z.; Antibacterial activity and mechanism of the sesquiterpene δ-cadinene against Listeria monocytogenes. LWT 2024, 203, 116388. [Crossref]
- Zhang, X. C.; Zhu, L.; Li, X. Y.; Liu, L. C.; Lai, P. X.; Chemical composition, and evaluation of antibacterial, antibiofilm and synergistic effects with conventional antibiotics of essential oil from *Mallotus repandus*. Records on Natural Products 2021, 15, 324. [Crossref]

596 Rev. Virtual Quim.

- 45. Santos, E. L.; Freitas, P. R.; Araújo, A. C. J.; Almeida, R. S.; Tintino, S. R.; Paulo, C. L. R.; Silva, A. C. A.; Silva, L. E.; do Amaral, W.; Deschamps, C.; Junior, J. P. S.; Filho, J. M. B.; de Sousa, G. R.; Ribeiro-Filho, J.; Coutinho, H. D. M.; Enhanced antibacterial effect of antibiotics by the essential oil of *Aloysia gratissima* (Gillies & Hook.) Tronc. and its major constituent beta-caryophyllene. *Phytomedicine Plus* 2021, 1, 100100. [Crossref]
- Sabzikar, A.; Hosseinihashemi, S. K.; Shirmohammadli, Y.; Jalaligoldeh, A.; Chemical Composition and Antimicrobial Activity of Extracts from Thyme and Rosemary Against Staphylococcus aureus and Candida albicans. BioResources 2020, 15, 9656. [Crossref]
- Hyldgaard, M.; Mygind, T.; Meyer, R. L.; Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. *Frontiers Microbiology* 2012, 3, 12. [Crossref] [PubMed]
- 48. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V.; Effect of essential oils on pathogenic bacteria. *Pharmaceuticals* **2013**, *6*, 1451. [Crossref] [PubMed]
- Salem, M. Z. M.; El-Hefny, M.; Ali, H. M.; Elansary, H. O.; Nasser, R. A.; El-Settawy, A. A. A.; El Shanhorey, N.; Ashmawy, N. A.; Salem, A. Z. M.; Antibacterial activity of extracted

- bioactive molecules of *Schinus terebinthifolius* ripened fruits against some pathogenic bacteria. *Microbial Pathogenesis* **2018**, *120*, 119. [Crossref] [PubMed]
- Sauthier, M. C. S.; dos Santos, W. N. L.; Caldas, J. C.; , Silva, I. M. J.; de Souza-Junior, J. J. C. L.; de Souza-Neta, L. C.; Ribeiro, L. A. F.; Screening of *Schinus terebinthifolia* Raddi fruit by access of its functional properties, antioxidant and antimicrobial capacity and metal content. *Química Nova* 2025, 48, e-20250036. [Crossref]
- Murray, A. P.; Vela Gurovic, M. S.; Rodriguez, S. A.; Murray, M. G.; Ferrero, A. A.; Acetylcholinesterase inhibition and antioxidant activity of essential oils from *Schinus areira* L. and *Schinus longifolia* (Lindl.) Speg. *Natural Products Communication* 2009, 4, 873. [Crossref] [PubMed]
- Mattar, V. T.; Borioni, J. L.; Hollmann, A.; Rodriguez, S. A.; Insecticidal activity of the essential oil of *Schinus areira* against *Rhipibruchus picturatus* (F.) (Coleoptera: Bruchinae), and its inhibitory effects on acetylcholinesterase. *Pesticide Biochemistry* and *Physiology* 2022, 185, 105134. [Crossref] [PubMed]
- Osorio, D.; Pinzón, A.; Martín-Jiménez, C.; Barreto, G. E.; González, J.; Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Frontiers in Neuroscience 2020, 13, 1410 [Crossref] [PubMed]