DOI: http://dx.doi.org/10.21577/1984-6835.20250002

Informações Suplementares

Molecular Dynamics Simulations of Omega-3 and Omega-6 Lipid Mediators as Partial Agonists of PPARγ

Simulações de Dinâmica Molecular de Mediadores Lipídicos Ômega-3 e Ômega-6 como Agonistas Parciais do PPARy

Fernando Freitas Siqueira Silva,^a (<u>https://orcid.org/0009-0005-1536-7918</u>) Roberto Ribeiro Faria,^{a,b} (<u>https://orcid.org/0000-0001-8966-3385</u>) Vinícius Schmitz Nunes,^{a,c} (<u>https://orcid.org/0000-0001-9523-1415</u>) Odonírio Abrahão Júnior^{a,*}(<u>https://orcid.org/0000-0001-9523-1415</u>) 0002-4522-9453)

^a Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Química Computacional Medicinal, Praça Manoel Terra 330, CEP 38015-050, Uberaba-MG, Brasil ^b Instituto Federal de Minas Gerais – IFMG, CEP 33805-488, Ribeirão das Neves-MG, Brasil ^c Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Produtos Bioativos e Biociências, CEP 27930-560, Macaé -RJ, Brasil

*<u>odonirio.junior@uftm.edu.br</u>

Figure S1. Radius of gyration (RG) analysis of apo-PPAR γ and PPAR γ -ligand complexes (average of the 3 replicas).

Figure S2. *Snapshots of the initial and final states of the simulations.* On the left are the frames at the initial time, and on the right are the frames at the final time of the simulations. The ligand is shown in licorice representation, with secondary structure elements of the protein colored as follows: helix 3 in red, the loop in orange, and beta sheets in green. The ligands are colored according to the molecule they represent: blue for 4HDHA, yellow for 9HODE, purple for arachidonic acid, and gray for DHA.

Table S1. Ligands' top 10 docking poses ranked by the total energy, which is composed of the torsional
energy of the ligand (not shown) and the intermolecular and intramolecular interactions according to the
electrostatic and vdW potentials.

Pose	Total	Interaction	vdW	Coul
r use	Energy	Energy	VUVV	cour
9HODE-1	-36.302	-54.113	-21.242	-32.871
9HODE-2	-34.843	-55.258	-19.212	-36.046
9HODE-3	-34.660	-53.362	-19.082	-34.280
9HODE-4	-34.426	-53.101	-19.268	-33.833
9HODE-5	-33.974	-54.711	-23.566	-31.145
AA-1	-32.712	-54.517	-22.343	-32.174
9HODE-6	-31.437	-51.238	-18.395	-32.843
AA-2	-31.401	-54.281	-26.721	-27.560
AA-3	-30.236	-54.764	-17.559	-37.205
4HDHA-1	-30.228	-57.966	-27.571	-30.395

AA-4	-30.208	-54.717	-23.745	-30.972
AA-5	-30.189	-52.359	-9.816	-42.543
AA-6	-29.691	-52.182	-11.590	-40.592
AA-7	-29.423	-52.215	-17.513	-34.702
4HDHA-2	-29.330	-59.440	-29.561	-29.879
AA-8	-29.023	-52.647	-14.579	-38.068
4HDHA-3	-28.986	-57.550	-25.617	-31.933
AA-9	-28.891	-53.256	-20.461	-32.795
DHA-1	-28.775	-55.384	-25.753	-29.631
AA-10	-28.609	-53.366	-16.956	-36.410
DHA-2	-28.592	-56.794	-19.769	-37.025
4HDHA-4	-28.532	-53.968	-21.126	-32.842
4HDHA-5	-28.419	-55.397	-25.128	-30.269
9HODE-7	-28.333	-52.658	-20.591	-32.067
4HDHA-6	-28.155	-54.269	-19.601	-34.668
9HODE-8	-27.861	-50.385	-15.043	-35.342
DHA-3	-27.790	-53.527	-24.465	-29.062
4HDHA-7	-27.683	-57.594	-22.835	-34.759
4HDHA-8	-27.569	-58.888	-29.482	-29.406
4HDHA-9	-27.545	-60.650	-25.592	-35.058
4HDHA-10	-27.345	-54.149	-23.172	-30.977
DHA-4	-26.992	-53.050	-23.058	-29.992
9HODE-9	-26.626	-46.415	-18.349	-28.066
DHA-5	-26.489	-52.660	-23.973	-28.687
9HODE-10	-26.234	-53.198	-19.117	-34.081
DHA-6	-25.978	-53.774	-24.057	-29.717
DHA-7	-25.676	-55.281	-16.105	-39.176
DHA-8	-25.428	-54.799	-24.364	-30.435
DHA-9	-25.350	-53.862	-22.281	-31.581
DHA-10	-24.794	-51.309	-21.514	-29.795

Table S2. Root mean square deviation (RMSD) values of apo-PPAR γ and PPARγ-ligand complexes.

		Simulation time (ns)	RMSD value per replica (nm)	RMSD (replicas average) (nm)
Аро	-	500	0.25	0.25

	r1	500	0.26	
AA	r2	500	0.27	0.26
	r3	500	0.23	
	r1	300	0.25	
DHA	r2	300	0.26	0.26
	r3	300	0.27	
	r1	500	0.26	
4HDHA	r2	500	0.24	0.24
	r3	500	0.24	
	r1	300	0.27	
9HODE	r2	300	0.29	0.28
	r3	300	0.27	

Table S3. Hydrogen bond frequencies in the protein-ligand complexes simulations, according to VMD andAMBER calculations.

Linoud	Circulation Douling	Desidues	Hydrog	gen Bonds
Ligand	Simulation Replica	Residues	VMD Frequency	AMBER Frequency
		K265	0.23	0.25
	r1	R288	0.15	0.16
	11	S342	0.49	0.59
V V 3		E343	0.11	-
AA	rJ	R288	0.48	0.50
_	12	S342	0.34	0.48
	rC	R288	0.38	0.38
	15	S342	0.77	0.86
	r1	Y327	0.86	0.92
	11	K367	0.68	0.83
рпур.	rJ	Y327	0.77	0.82
DIA	12	K367	0.73	0.89
	rJ	Y327	0.58	0.63
	15	K367	0.56	0.72
	r1	H266	0.43	0.32
_	11	R280	0.93	0.95
		K265	0.10	-
	r2	H266	0.48	0.48
4000		R280	0.91	0.96
		K265	0.56	0.43
	r3	S342	0.82	0.88
		E343	0.11	-
		K265	0.32	0.36
	r1	R280	0.29	0.30
		S342	0.60	0.57
		K263	0.21	-
9HODE ^d	rJ	K265	-	0.26
	12	R280	0.62	0.68
		S342	-	0.14
	r2	R280	0.83	0.88
	15	S342	0.14	0.20

^aArachidonic acid; ^bdocosahexaenoic acid; ^c4-hydroxydocosahexaenoic acid; ^d9-hydroxyoctadecadienoic acid. Minor differences observed in the residues list and frequencies values are attributed to the distinct donor–acceptor (D–A) distance and angles cut-offs used as pattern by each tool. VMD uses a D–A distance and a hydrogen–donor–acceptor (H–D–A) angle cut-off of 3.5 Å and 30°, respectively, whereas AMBER uses a D–A distance and a donor–hydrogen–acceptor (D–H–A) angle cut-off of 3.0 Å and 135°, respectively.

Res	AA			DHA			4HDI	HA		9HOI	DE	
nes	r1	r2	r3									
R212	-2.6	-2.5	-2.4	-2.2	-2.2	-2.3	-1.8	-1.8	-2.3	-2.3	-1.8	-1.9
K216	-2.7	-2.7	-2.6	-2.3	-2.3	-2.3	-2.0	-2.1	-2.8	-2.5	-2.0	-2.2
K224	-3.6	-3.4	-3.4	-2.7	-2.7	-2.7	-2.5	-2.6	-3.6	-3.2	-2.5	-2.8
K230	-4.1	-4.3	-4.0	-3.3	-4.1	-3.2	-2.9	-2.9	0.0	-3.6	-2.8	-3.1
K232	-4.8	-5.0	-4.7	-3.1	-3.0	-3.1	-3.2	-3.5	-5.1	-4.4	-3.3	-3.6
R234	-4.0	-4.0	-3.6	-3.1	-3.5	-3.3	-2.8	-2.9	-3.7	-3.5	-2.7	-3.0
K240	-3.2	-3.5	-3.1	-2.5	-2.7	-2.6	-2.5	-2.6	-3.3	-3.1	-2.5	-2.7
244	-4.2	-3.7	-4.0	-2.5	-2.5	-2.6	-3.6	-3.7	-4.2	-4.3	-3.8	-4.0
K261	-4.0	-4.0	-4.0	-2.9	-2.9	-2.9	-4.8	-4.5	-4.0	-4.6	-4.9	-4.3
K263	-5.3	-5.5	-4.8	-3.1	-3.0	-3.0	-4.9	-5.5	-4.9	-6.0	-5.5	-5.7
K265	-5.6	-4.8	-5.6	-3.5	-3.3	-4.0	-5.5	-5.7	-4.9	-4.6	-5.3	-5.4
K275	-3.4	-3.5	-3.9	-3.6	-3.6	-3.7	-5.2	-4.6	-3.5	-3.7	-6.4	-4.4
R280	-4.2	-4.4	-4.6	-3.5	-3.8	-4.1	-4.3	-5.7	-3.9	-4.8	-4.7	-4.3

Table S4. Positively charged residues that showed binding energy ≤ -1 kcal.mol⁻¹ from MMPBSA calculations in at least one simulation replica. Energy values ≤ -4.5 kcal.mol⁻¹ are highlighted.

R288 -7.7 -6.6 -7.2 -5.9 -5.9 -6.1 -4.8 -6.2 -8.3 -7.6 -5.1 -6.6 **K301** -3.4 -3.4 -3.3 -3.2 -3.3 -3.2 -2.7 -2.8 -3.6 -3.5 -2.7 -3.0 K319 -3.1 -2.9 -3.0 -3.7 -3.7 -3.7 -2.7 -2.8 -3.0 -3.0 -2.6 -2.8 **K336** -3.4 -3.4 -3.5 -3.3 -3.3 -3.3 -2.8 -3.0 -3.5 -3.3 -2.8 **-3.0** R350 -3.6 -3.3 -3.5 -3.7 -3.9 -3.7 -3.1 -3.2 -3.4 -3.4 -3.0 -3.2 **K354** -3.4 -3.2 -3.5 -3.9 -4.0 -3.8 0.0 -3.3 -3.3 -3.4 -3.2 -3.3 **R357** -3.4 -3.3 -3.6 -3.8 -3.8 -3.7 -4.2 -4.0 -3.2 -3.5 -4.1 -3.9 **K358** -3.0 -2.9 -3.1 -4.3 -4.2 -4.2 -3.3 -3.2 -2.9 -3.0 -3.0 -3.1 K367 -3.8 -3.5 -3.9 -4.6 -5.5 -4.4 -3.3 -3.5 -3.7 -3.8 -3.2 -2.8 **K373** -3.1 -3.0 -3.1 -3.8 -3.8 -3.7 -2.5 -2.6 -2.9 -2.9 -2.4 **-2.6 R397** -3.4 -3.2 -3.2 -4.0 -4.1 -4.0 -2.5 -2.6 -3.0 -2.9 -2.5 -2.7 **K404** -2.1 -2.1 -2.0 -2.4 -2.4 -2.4 -1.7 -1.7 -1.9 -1.9 -1.6 **-1.7** K422 -2.3 -2.2 -2.2 -2.2 -2.3 -2.3 -1.7 -1.7 0.0 0.0 0.0 -1.8 **K434** -2.7 -2.6 -2.6 -2.9 -2.9 -2.9 -2.0 -2.1 -2.4 -2.3 -1.9 **-2.1** K438 -3.2 -3.1 -3.0 -3.4 -3.5 -3.4 -2.4 -2.5 -2.8 -2.7 -2.3 -2.5 R443 -3.1 -3.0 -2.9 -3.7 -3.7 -3.7 -2.4 -2.4 -2.8 -2.7 -2.2 -2.5

8

 K457
 -3.2
 -3.4
 -3.5
 -5.3
 -5.1
 -4.7
 -3.4
 -3.1
 -3.2
 -3.2
 -3.3

 K458
 -2.8
 -2.8
 -2.9
 -4.1
 -4.1
 -4.0
 -2.9
 -2.9
 -2.6
 -2.7
 -2.8
 -2.8

 K474
 -2.8
 -2.8
 -2.9
 -3.8
 -3.8
 -4.0
 -2.8
 -2.7
 -2.8
 -2.9
 -2.5
 -2.7

Res	AA			DHA			4HDI	ΗA		9HOI	DE	
	r1	r2	r3									
F264	-	-	-	-1.0	-0.8	0.0	-0.7	-1.2	-1.6	-0.4	-1.1	-0.7
H266	-	-	-	-	-	-	-0.6	-1.5	-0.1	-	-	-
I281	-	-	-	-1.0	-0.8	-1.1	-1.1	-0.7	-1.9	-0.4	-1.0	-0.8
C285	-1.4	-1.3	-1.7	-1.8	-1.8	-1.7	-1.8	-1.5	-1.4	-1.4	-1.3	-1.4
Y327				-0.9	-1.0	-0.7						
L330	-2.0	-1.6	-1.2	-1.3	-1.5	-1.3	-1.0	-0.4	-0.8	-1.6	-0.8	-1.3
1341	-1.0	-1.2	-1.3	-1.4	-1.3	-1.4	-1.5	-1.4	-1.9	-1.6	-1.3	-1.3
M348	-	-	-	-	-	-	-1.1	-0.9	-0.9	-	-	-
M364	-1.2	-0.7	-0.9	-	-	-	-	-	-	-	-	-

Table S5. Neutral residues that showed total binding energy ≤ -1 kcal.mol⁻¹ from MMPBSA calculations in at least one simulation replica. The most favorable energy values from each replica are highlighted.

Table S6. Comparison between vacuum potential energy and total binding energy of some positively charged residues. Residues' polar solvation energy values \geq 15.0 kcal.mol⁻¹ are displayed.

			Per residue MM/PBSA energy values (kcal.mol ⁻¹)				
Ligand	Simulation replica	Residues	Vacuum	Polar solvation	Total binding		
			energy	energy	energy		
	r1	K265	-14.4	-	-5.6		
	11	R288	-14.5	-	-7.7		
A A	r)	K263	-7.2	-	-5.5		
AA	12	R288	-18.9	-	-6.6		
		K265	-10.9	-	-5.6		
	15	R288	-18.3	-	-7.2		
		R288	-8.3	-	-5.9		
DHA	r1	K367	-24.5	19.9	-4.6		
		K457	-6.5	-	-5.3		
		R288	-8.2	-	-5.9		
	r2	K367	-25.0	19.5	-5.5		
		K457	-6.4	-	-5.1		
		R288	-8.4	-	-6.1		
	r3	K367	-24.1	19.8	-4.4		
		K457	-6.2	-	-4.7		
		K263	-5.6	-	-4.9		
		K265	-9.0	-	-5.5		
	r1	K275	-6.7	-	-5.2		
		R280	-25.6	21.5	-4.3		
		R288	-7.2	-	-4.8		
		K263	-6.6	-	-5.5		
4HDHA	rJ	K265	-8.7	-	-5.7		
	12	R280	-23.6	18.1	-5.7		
		R288	-9.3	-	-6.2		
		K232	-5.8	-	-5.1		
	r3	K263	-5.3	-	-4.9		
	15	K265	-20.2	15.4	-4.9		
		R288	-15.5	-	-8.3		
	r1	K263	-11.3	-	-6.0		
JHODE	11	K265	-15.1	-	-4.6		

	R280	-11.3	-	-4.8
	R288	-14.0	-	-7.6
	K263	-13.0	-	-5.5
	K265	-8.4	-	-5.3
٢Z	K275	-9.1	-	-6.4
	R280	-20.4	15.9	-4.7
	K263	-7.6	-	-5.7
-2	K265	-7.3	-	-5.4
13	R280	-22.5	18.3	-4.3
	R788	-9.2	-	-6.6