DOI: http://dx.doi.org/10.21577/1984-6835.20240062

Informações Suplementares

Compostos Hexacianoferratos Aplicados em Baterias Aquosas de Inserção de Prótons

Hexacyanoferrate Compounds Applied to Aqueous Proton-Insertion Batteries

Lorena Almeida Cadête Costa,^{a,*} (<u>https://orcid.org/0009-0002-9086-5827</u>) Débora Alois de Abreu Martins,^a (<u>https://orcid.org/0009-0003-3999-3679</u>) José Domingos Ardisson,^b Luciana Flavia de Almeida Romani,^a Tulio Matencio,^a (<u>https://orcid.org/0000-0002-5660-8125)</u> Luciano Andrey Montoro^a

^aUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, CEP 31270- 901, Belo Horizonte-MG, Brasil ^bCentro de Desenvolvimento da Tecnologia Nuclear – CDTN, CEP 31270- 901, Belo Horizonte-MG, Brasil

<u>*lorena_kdt@hotmail.com</u>

Figura 1S. Imagens representativas obtidas por Microscopia Eletrônica de Varredura (MEV) para os materiais de (a) ZnHCF, (b) CoHCF, (c) NiHCF e (d) MnHCF

Figura 2S. Resultados de Espectroscopia de Energia Dispersiva de raios X (EDS) integrada ao Microscópio de Varredura (MEV) obtidos para os materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Figura 3S. Resultados de Espectroscopia vibracional na região do infravermelho (KBr) obtidos para os materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Figura 4S. Resultados de Análise termogravimétrica obtidos para os materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Figura 5S. Espectros Mössbauer de ⁵⁷Fe obtidos a temperatura ambiente para os materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Figura 6S. Curvas de CGPL obtidas em soluções de 1 mol L⁻¹ de H₂SO₄, para o material de MnHCF em taxa 0,5C em faixa de potencial de (a) 0,0 a 1,2 V e (b) 0,0 a 0,9 V

Figura 7S. Difratograma de raios X (DRX) obtido para o tecido de carbono utilizado nos eletrodos de MnHCF

Tabela 1S. Parâmetros cristalográficos dos materiais sintetizados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF). Parâmetros das arestas da célula unitária (a, b, c); volume (V) e tamanho de cristalito (τ).

τ/ nm
21,62
18,74
15,91
12,04

Parâmetros das arestas da célula unitária (a, b, c); volume (V); ângulo beta (β) e tamanho de cristalito (τ)

 Tabela 2S. Média e desvio padrão dos óxidos dos metais determinados pela FRX para os

 materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Materiais	Porcentagem em Massa/ %							
	K₂O	Fe ₂ O ₃	ZnO	C0 ₂ O ₃	NiO	MnO		
ZnHCF	7,40 ± 1,05	30,9 ± 0,6	61,6 ± 0,5	-	-	-		
MnHCF	35,8 ± 1,9	31,20 ± 2,05	-	-	-	33,0 ± 0,3		
CoHCF	23,1 ± 0,06	33,1 ± 0,1	-	43,8 ± 0,2	-	-		
NiHCF	21,1 ± 1,3	34,8 ± 0,3	-	-	44,1 ± 0,9	-		

Materiais	Estado de	& (± 0.05) /	∆Eq (±0.05) /	Γ (±0.05) /	Área (± 1) /
	Oxidação	mm/s	mm/s	mm/s	%
MnHCF	Fe ^(II) (LS)	-0,11	0,09	0,29	100
ZnHCF	Fe ^(II) (LS)	-0,13	0,08	0,29	100
CoHCF	Fe ⁽¹¹⁾ (LS)	-0,11	0,14	0,30	77
	Fe ^(III) (HS)	-0,10	0,56	0,30	23
NiHCF	Fe ^(II) (LS)	-0,10	0,09	0,30	100

Tabela 3S. Parâmetros hiperfinos obtidos a temperatura ambiente por EspectroscopiaMössbauer de 57Fe para os materiais analisados neste estudo (ZnHCF, MnHCF, CoHCF e NiHCF)

Deslocamento isomérico relativo ao α -Fe (&), desdobramento quadrupolar (Δ Eq), largura de linha à meia altura (Γ) e da área espectral para todos os compostos analisados. LS refere-se aos estados de baixo-spin e HS aos estados de alto-spin.