DOI: http://dx.doi.org/10.21577/1984-6835.20250016

Informações Suplementares

Avaliação e Otimização da Verdura Química da Síntese de Complexos de Cobre

Evaluation and Optimization of the Chemical Greenness of Copper Complex Synthesis

Lucéli Roloff, ^a (<u>https://orcid.org/0000-0003-0306-255X</u>) Maria Gabriela Teles Cepeda Ribeiro,^b Fauze Jacó Anaissi^{a,} *(<u>https://orcid.org/0000-0002-5454-472X</u>)

^a Universidade Estadual do Centro Oeste, Departamento de Química, Alameda Élio Antônio Dalla Vecchia 838, Guarapuava-PR, CEP 85040-167, Brasil

^b Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, LAQV/REQUINTE, Rua do Campo Alegre 687, CEP 4169-007, Portugal

*anaissi@unicentro.br

1. Espectro Vibracional na Região do Infravermelho (FTIR)

A espectroscopia vibracional na região do infravermelho (FTIR) é uma técnica importante para caracterizar compostos de coordenação, envolvendo metal-ligantes, pois possibilitam atribuir as mudanças ocorridas nos modos vibracionais como consequência da coordenação mono-, bi- ou polidentada; e identificar o grau de pureza em função da presença de impurezas ou excesso de ligante.

Os espectros vibracionais foram obtidos em um espectrofotômetro da Perkin Elmer, modelo Frontier, na região de 4000-650 cm⁻¹, com média de 8 varreduras, resolução de 2 cm⁻¹. Foi utilizado o modo de refletância atenuada (ATR – attenuated total reflectance), equipado com cristal de ZnSe.

1.1. Complexo cis-bis(glicinato)cobre (II) – Cu(Gli)

Os espectros vibracionais da glicina (Gli) e do complexo cis-bis(glicinato)cobre (Cu(Gli)) são mostrados na **Figura 1S**. O espectro da Gli apresenta modos vibracionais devido ao grupo carboxilato (COO⁻) em 694 cm⁻¹, 1406 cm⁻¹, 1582 cm⁻¹; e uma banda em 1609 cm⁻¹ devido ao estiramento assimétrico do CO₂. As bandas em 1582 e 1609 cm⁻¹ surgem de forma combinada, indicando a mistura de diferentes formas de glicina, formas $\alpha \in \gamma$ respectivamente). Em 891 cm⁻¹ (γ -glicina) ocorre a presença do estiramento simétrico do grupo CCN; e uma banda em 910 cm⁻¹ (α -glicina), característico da vibração CH₂. Em 1033 cm⁻¹ ocorre a presença do estiramento assimétrico do grupo CCN; e uma banda em 910 cm⁻¹ (α -glicina), característico correspondendo à forma α da glicina. Em 1110 cm⁻¹ tem-se um modo vibracional atribuído à forma NH₃⁺. Uma pequena banda, aparece em 1133 cm⁻¹ atribuído à NH₃⁺, da α -glicina. As variações deslocamentos ocorrem em diferentes fases da glicina, sendo a forma γ a mais estável, enquanto as demais são metaestáveis.¹

Em 1331 cm⁻¹ ocorre um processo atribuído à torção da ligação CH₂. Esse processo vem acompanhado de um pico acoplado em 1313 cm⁻¹, também atribuído ao CH₂. Em 1406 cm⁻¹ tem-se um processo característico do estiramento simétrico do grupo COO⁻ e em 1449 cm⁻¹ atribuído à deformação angular do grupo CH₂. A pequena banda em 2607 cm⁻¹ e a banda em 3155 cm⁻¹ são características do grupo NH₃⁺. As bandas que ocorrem em 2707 cm⁻¹, 2820 cm⁻¹, 2900 cm⁻¹, 2970 cm⁻¹ (simétrico) e 3013 cm⁻¹ (antissimétrico) são atribuídos ao estiramentos C-H, os grupos N-H também absorvem nessa região.²⁻⁴

O espectro vibracional do complexo ci-bis-(glicinato)cobre(II) apresenta-se diferente da glicina, especialmente na região entre 2000 cm⁻¹ e 3600 cm⁻¹. As bandas características do complexo ci-bis-(glicinato)cobre(II) ocorrem em 660 cm⁻¹ (COO), 746 cm⁻¹, 922 cm⁻¹ (CH₂), 962 cm⁻¹, 1038 cm⁻¹ (torção-CH₂), 1062 cm⁻¹ (CCN), 1119 cm⁻¹ (NH₃⁺), 1183 cm⁻¹, 1320 cm⁻¹, 1389 cm⁻¹ (estiramento simétrico COO), 1424 cm⁻¹, 1573 cm⁻¹ (estiramento assimétrico COO), 1590 cm⁻¹(estiramento assimétrico COO), 1678 cm⁻¹ (característico de H₂O, no caso, complexo monohidratado), 2929 cm⁻¹, 2957 cm⁻¹, 3161 cm⁻¹ (estiramento NH₂ da glicina), 3260 cm⁻¹ (estiramento simétrico NH₂), 3337 cm⁻¹ (estiramento assimétrico NH₂). Regiões de maiores números de onda para complexos com aminoácidos tanto para as vibrações no COO quanto do NH₂ comprovam a existência do *cis*-complexo.^{5,6}

Figura 1S. Espectro vibracional na região do infravermelho (FTIR) do ligante glicina (Gli), e do complexo cis-bis(glicinato)cobre(II)

1.2. Complexo bis(sacarinato)cobre (II) – Cu(Sac)

A **Figura 2S** mostra o espectro FTIR para o ligante sacarina e o complexo bis(sacarinato)cobre (II). As diferenças mais importantes nos espectros ocorrem nas regiões de 3400 cm⁻¹ – 3600 cm⁻¹, 2800 cm⁻¹ – 3200 cm⁻¹ e em 800 cm⁻¹ – 1000 cm⁻¹. Para o complexo, a região que compreende os modos vibracionais do grupo SO₂ é uma das mais importantes (1060 cm⁻¹ – 1400 cm⁻¹). No entanto, eles não indicam o metal envolvido na ligação. Isso se deve ao fato de os estiramentos antissimétricos serem mais sensíveis às mudanças estruturais que os estiramentos simétricos. A sacarina apresenta modos de estiramento vibracionais para o grupo SO₂ em 1050 cm⁻¹, 1119 cm⁻¹ (ombro), 1150 (cm⁻¹), 1252 cm⁻¹ (v_s), 1284 cm⁻¹ (ombro), e 1336 cm⁻¹ (v_{as}), sendo esse característico do sacarinato de sódio.⁷

Para o complexo formado, esses modos vibracionais estão deslocados e os ombros passam a ser melhor definidos, passando, portanto, para as posições: 1163 cm⁻¹ (v_s) com pico acoplado em 1126 cm⁻¹; 1265 cm⁻¹ correspondente ao estiramento em 1284 cm⁻¹ da sacarina, seguido de uma intensificação e deslocamento do estiramento anteriormente presente em 1252 cm⁻¹ para 1666 cm⁻¹ (v_s) e um ombro que ocorre em 1285 cm⁻¹ surge como um pico bem definido em 1300cm⁻¹; o pico em 1336 cm⁻¹ passa agora para 1356 cm⁻¹ (v_{as}).⁸ O pico intenso localizado em aproximadamente 956 cm⁻¹ corresponde ao estiramento simétrico do grupo CNS.⁹ Esse pico teve um dos maiores deslocamentos no espectro vibracional, o que corrobora uma complexação através no nitrogênio, sítio de complexação mais comum para o sacarinato de sódio. O grupo carbonila apresenta um pico intenso em 1634 cm⁻¹, sendo este antecedido por um pico de menor intensidade em 1588 cm⁻¹, para o complexo esses modos vibracionais passam a ocorrer em 1617 cm⁻¹ e 1580 cm⁻¹, respectivamente. Na região de absorção referente aos estiramentos da hidroxila, observa-se uma pequena alteração entre a sacarina sódica e o complexo formado. A sacarina apresenta suas bandas em 3564 cm⁻¹ e 3500 cm⁻¹, enquanto o complexo as bandas aparecem em 3562 cm⁻¹ e 3501 cm⁻¹, e um pico em 3412 cm⁻¹. Uma pequena alteração ocorre ainda na região referente ao anel fenílico, na sacarina a absorção ocorre em 702 cm⁻¹, enquanto no complexo ocorre em 711 cm⁻¹. Há ainda um pequeno deslocamento dos picos referentes ao estiramento das ligações CH, na sacarina ocorre em 3067 cm⁻¹ e no complexo em 3099 cm⁻¹.^{9,10}

Figura 2S. Espectro vibracional na região do infravermelho (FTIR) do ligante sacarina (Sac), e do complexo bis(sacarinato)cobre(II)

Referências Bibliográficas

- Doki, N.; Seki. H.; Takano, K.; Asatani, H.; Yokota, M.; Kubota, N. P.; Process Control of Seeded Batch Cooling Crystallization of the Metastable r-Form Glycine Using an In-Situ ATR-FTIR Spectrometer and an In-Situ FBRM Particle Counter. *Crystal Growth & Design* 2004, *4*, 949. [Crossref]
- Ahamed, S. Z. A.; Dillip, G. R.; Raghavaiah, P.; Mallikkarjuna, K.; Raju, B. D. P.; Spectroscopic and thermal studies of γ glycine crystal grown from potassium bromide for optoelectronic applications. *Arabian Journal of Chemistry* **2013**, *6*, 429. [Crossref]
- Azhagan, A. A. C. Ganesan, S.; Structural, mechanical, optical and second harmonic generation (SHG) studies of gamma glycine single crystal. *International Journal of the Physical Sciences* 2013, *8*, 6. [Crossref]

- Bykov SV, Myshakina NS, Asher SA. Dependence of glycine CH2 stretching frequencies on conformation, ionization state, and hydrogen bonding. *The Journal Physical Chemistry B.* 2008, *112*, 5803. [Crossref]
- Saxena, A. K.; A Method for the Preparation of the cis-Bis(Glycinato)Copper(II) Monohydrate Complex in the Solid State. *Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry* 1998, 28, 1653. [Crossref]
- Berestova, T. V.; Kuzina, L. G.; Amineva; N. A., Faizrakhmanov I. S.; Massalimov I. A.; Mustafin, A. G.; ATR-FTIR spectroscopic investigation of the cis- and trans-bis-(α-aminoacids) copper(II) complexes, *Journal of Molecular Structure* **2017**, *1137*, 60. [Crossref]
- Jovanovski, J.; Metal saccharinates and their complexes with N-donor ligands. *Croatica Chemica* Acta 2000, 3, 843. [Crossref]
- Toikka, Y. N.; Spiridonova, D. V.; Novikov, A. S.; Bokach, N. A.; Copper(II) Prevents the Saccarine-Dialkylcyanamide
 Coupling
 by
 Forming
 Mononuclear
 (Saccharinate)(Dialkylcyanamide)copper(II)Complexes. *Inorganics* 2021, 9, 69. [Crossref]
- Parajón-Costa, B.; Baran, E.; Piro, O.; Castellano, E. E.; Crystal Structure and Vibrational Behaviour of Aqua Di (saccharinato) di (nicotinamide) copper (II). *Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences* 2002, *57*, 43. [Crossref]
- Santi, E., Viera, I., Mombrú, A.; Castiglioni, J., Baran, E. J.; Torre, M. H.; Synthesis and Characterization of Heteroleptic Copper and Zinc Complexes with Saccharinate and Aminoacids. Evaluation of SOD-like Activity of the Copper Complexes. *Biological Trace Element Research* 2011, 143, 1843. [Crossref]