

^a Universidade Federal de Sergipe,
Programa de Pós-Graduação em
Ciências e Engenharia de Materiais,
CEP 49100-000, São Cristóvão-SE, Brasil
^b Universidade Federal de Sergipe,
Programa de Pós-Graduação em
Química, CEP 49100-000, São Cristóvão-SE, Brasil

*E-mail: cientista.dsantos21@gmail.com

Submissão: 16 de Janeiro de 2024

Aceite: 5 de Dezembro de 2024

Publicado online: 7 de Janeiro de 2025

Modelagem da Energia de Gibbs de Injeção de Elétrons de Corantes D- π -A Baseados em Trifenilaminas

Modeling the Gibbs Energy of Electron Injection of D- π -A dyes Based on Triphenylamines

Diego M. Santos,^{a,}*[®] Emanuel F. S. Mattos,^b[®] Nivan B. da Costa Jr^{a,b}

In the pursuit of affordable and sustainable energy production, dye-sensitized solar cells (DSSCs) have become increasingly prominent in recent decades. Among the various sensitizing dyes, those falling into the D- π -A category utilizing triphenylamine as a donor group have been extensively explored. Since the effectiveness of electron injection from the dye to the semiconductor constitutes a crucial step in the conversion of light into electrical current, our goal is to propose models that establish a relationship between dye characteristics and the Gibbs energy of electron injection, . Developing such models is significant, as a rapid estimation of a specific molecular property holds immense value, particularly when the objective is optimization. In this context, this study introduces two Quantitative Structure-Property Relationship (QSPR) models, derived through multiple linear regression, designed to predict for organic dyes featuring the D- π -A architecture based on triphenylamine. Both models, labeled as M-1 and M-2, exhibit a satisfactory fit and predictive capability ($R_{Train}^2 > 0.70$ and $R_{Test}^2 > 0.68$). They adhere to other metrics and tests commonly employed in QSPR model validation, such as y- randomization and r_m^2 . When applied to estimate ΔG_{inj} for a new set of dyes, both M-1 and M-2 yield satisfactory predictions, closely aligning with the calculated ΔG_{inj} .

Keywords: Triphenylamine; DSScs; QSPR.

1. Introdução

Tendo em vista o grande consumo energético mundial, um dos grandes desafios do século é a produção de energia de maneira barata e sustentável. Faz-se necessário uma transição das fontes fósseis para as energias limpas, das quais a energia solar tem se destacado. Nos últimos anos, devido a melhora da relação custo/benefício associada a produção de eletricidade via dispositivos fotovoltaicos, o emprego desses sistemas tem aumentado consideravelmente em diversas regiões do mundo.^{1.2} Por exemplo, de 2004 a 2019, o consumo da energia solar fotovoltaica cresceu e continuou a crescer nos três anos consecutivos, mesmo com a pandemia do COVID-19.^{3.4}

Apesar deste enorme avanço da energia solar, a principal fonte de energia no mundo continua sendo a fóssil. Porém, a grande demanda energética, aliada com a preocupação com questões ambientais, tem incentivado a busca por dispositivos fotovoltaicos mais baratos e eficientes.^{5–8} O desenvolvimento de um dispositivo de fácil fabricação, menor custo e que apresenta um excelente desempenho sob baixa luminosidade ^{9,10} tem despertado bastante interesse nas últimas década. Tais dispositivos são as chamadas células solares sensibilizadas por corantes, DSSCs (do inglês "*Dye-Sensitized Solar Cells*").¹¹

As DSSCs são comumente compostas por dois eletrodos (fotoanodo e o catodo) e um eletrólito.^{5,8} O fatoanodo é comumente formado por um substrato de vidro condutor (normalmente, o óxido de estanho dopado com flúor, SnO_2 :F, o qual é geralmente abreviado por FTO), um filme de óxido semicondutor, como o TiO₂, e um corante sensibilizador adsorvido na superfície do semicondutor. O catodo também é composto por um substrato de vidro condutor, porém esse leva um filme metálico (comumente, a platina é empregada). O eletrólito mais recorrente em DSSCs é formado pelo par (I-/I₃⁻) em solventes orgânicos.⁷

Nessas células, o processo de conversão de luz em energia elétrica tem como parte fundamental a injeção eficiente de elétrons do corante sensibilizador no estado excitado para o semicondutor.^{5,6} Durante a irradiação solar, o corante é excitado e, em seguida, ocorre a injeção de elétrons na banda de condução do semicondutor que, por difusão, são transportados para o fotoanodo. Por fim, o corante oxidado é regenerado pela cessão de elétrons vindos do agente redutor presente no eletrólito, esse é restaurado no catodo via da redução da espécie oxidada.

Embora, as DSSCs sejam compostas por múltiplos componentes, no geral, os corantes regem a eficiência dessas células. Dentre os corantes, os orgânicos têm atraído bastante atenção, haja vista os seus benefícios.^{5,7,12} A configuração clássica de um corante orgânico é composta por três componentes, o Doador (D), o espaçador π (π) e o aceptor (A), formando a chamada arquitetura D- π -A.¹³ Ou seja, o corante sensibilizador é formado por um grupo doador de elétrons ligados covalentemente, por meio de um espaçador π -conjugado, a um aceptor de elétrons.

Um bom sensibilizador tende a ser formado por componentes que resultam em boas propriedades eletrônicas e espectroscópicas. Por exemplo, sabe-se que uma intensa banda de transferência de carga intramolecular (ICT, do inglês *"Intramolecular Charge Transfer"*), a qual é crucial para a captação e conversão de energia, é resultado da interação eletrônica entre o doador e o receptor.¹⁴ Além disso, a estrutura ajustável dos espaçadores π influencia tanto a absorção de luz quanto a posição do estado excitado e, portanto, as propriedades fotofísicas do corante. De fato, é esperado que o aumento da conjugação desloque a banda de ICT do corante para a região do vermelho aumentando, consequentemente, a sobreposição espectral com espectro solar, levando a uma maior tendência em injetar elétrons no semicondutor.^{15,16}

Com o intuito de otimizar as propriedades moleculares, a síntese de novos corantes orgânicos tem sido amplamente explorada.^{17–19} Dos diversos corantes, aqueles de arquitetura D- π -A que empregam a trifenilamina como doador têm guiado a obtenção de DSSCs com eficiências de conversão superiores as células que adotam outros tipos de doadores.^{17,20} No geral, a satisfatória performance desses sensibilizadores pode ser atribuída as suas excelentes propriedades eletrônicas, espectroscópicas e, como já dito anteriormente, uma boa tendência para injetar elétrons no semicondutor.^{5,6,15,16}

Alguns estudos teóricos apontam uma relação para medir da tendência que um dado corante no estado excitado terá para injetar elétrons na banda de condução do semicondutor. Tal relação é a chamada energia livre de injeção de elétrons, ΔG_{ini} , a qual é obtida a partir da realização de cálculos DFT para os estados fundamental e excitado para o corante de interesse.^{20,21} De fato, supondo moléculas contendo poucos átomos, a obtenção do ΔG_{inj} para pequeno conjunto de corantes pode ser feita rapidamente, porém o aumento do número de átomos nas moléculas, ou o aumento do conjunto avaliado, pode ocasionar em cálculos computacionalmente custosos. Nesse sentido, a modelagem QSPR (do inglês, "Quantitative Structure-Property Relationship") pode fornecer meios para a realização de boas estimativas da energia livre de injeção de elétrons para corantes orgânicos, principalmente quando deseja-se analisar dezenas de potenciais novos sensibilizadores.^{22,23} A principal vantagem da modelagem QSPR é que o seu resultado será uma expressão relacionando quantitativamente determinadas características moleculares com a propriedade de interesse.

Desse modo, o objetivo do presente trabalho é buscar um modelo QSPR voltado para a predição da energia livre de injeção de elétrons, ΔG_{inj} , de corantes orgânicos de arquitetura D- π -A baseados em trifenilamina. Buscou-se focar especificamente nesse padrão de sensibilizador devido a sua satisfatória eficiência em DSSCs.

2. Experimental

2.1. Seleção dos corantes

Um total de 200 estruturas de corantes de arquitetura D- π -A – sendo a trifenilamina e o ácido cianoacrílico escolhidos como grupos doadores e aceptores, respectivamente – foram selecionadas (ver Tabela S3) do banco de dados de DSSCs disponibilizado por Venkatraman e Chellapan.²⁴ Ainda na seleção, optamos por considerar apenas as células que empregaram TiO₂ como semicondutor, o I-/I₃⁻ como par redox e sem coadsorventes. Assim, a partir desse conjunto de critérios, garantimos a similaridade das células, atribuindo as possíveis diferenças apenas aos corantes.

2.2. Otimização, descritores e cálculo da ΔG_{ini}

A otimização estrutural e o cálculo dos estados excitados dos corantes selecionados foram realizados em fase gasosa usando a teoria do funcional da densidade, DFT e TD-DFT, respectivamente. A otimização estrutural foi realizada no nível B3LYP/6-31G(d). Já os estados excitados foram calculados na geometria otimizadas, no nível CAM-B3LYP/6-31G(d), implementado no programa ORCA. Desse modo, a partir dos cálculos dos estados fundamentais e excitados, a variável resposta, a energia de Gibbs de injeção de elétrons, ΔG_{inj} , foi calculada segundo as Equações 1 e 2.

Em relação ao cálculo dos descritores, 10 químicoquânticos foram obtidos a partir da saída do DFT. Adicionalmente 1444 descritores estruturais 2D e apenas 330 3D referente aos tipos CPSA, RDF, WHIM foram calculados empregando o programa PaDEL.²⁵

A energia de Gibbs de injeção de elétrons é dada pela diferença entre o potencial de oxidação do corante excitado, E^*_{Dye} e a energia da banda de condução do semicondutor, E_{CB} (-4.0 eV para o TiO₂),^{5.20,26,27} como descrito pela Equação 1.

$$\Delta G_{inj} = E_{Dye}^* - E_{CB} \tag{1}$$

Sendo o E_{Dye}^* determinado pela diferença entre o potencial de ionização do corante no estado fundamental (E_{Dye}) e a energia da transição de máxima absorção do corante $(E_{\lambda max})$, assim com dado pela Equação 2.^{5,20,26,27}

$$E_{dye}^* = E_{Dye} - E_{\lambda_{max}}$$
(2)

2.3. Construção e validação dos modelos

Tendo em vista o grande número de descritores inicialmente presentes na matriz de dados, surge a necessidade de exclusão daqueles menos significativos para a resposta, ΔG_{inj} . Para isso, foram empregados critérios de correlação e variância para a filtragem das variáveis. Os descritores com a baixa variância ($\sigma^2 < 2.10^2$) foram excluídos da matriz de dados; dos pares de descritores altamente correlacionados (r > 0,90), aquele menos correlacionado com ΔG_{inj} foi excluído; por fim, os descritores menos correlacionados com ΔG_{inj} (r < 0,05) foram retirados da matriz. Após as aplicações desses critérios de filtragem, restaram apenas 170 descritores.

Utilizando a matriz de dados filtrada, a divisão Treino/ Teste foi realizada empregando o algoritmo de Kennard-Stone, disponível no pacote prospectr.²⁸ A divisão empregada na modelagem foi de 140 estruturas para o conjunto de treinamento e as outras 60, para o grupo de teste. Os modelos foram obtidos a partir do conjunto de treinamento e empregando o método de regressão linear múltipla (MLR, do inglês "Multiple Linear Regression"), em conjunto o algoritmo genético – disponível no pacote gaselect²⁹ – para a seleção de variáveis.

Por fim, os modelos obtidos foram validados por meio das métricas R^2_{Treino} . R^2_{Teste} , Q^2_{LOO} (coeficiente de determinação para validação cruzada leave-one-out), r^2_{n*} y-randomization (feito com 50 iterações) e métricas baseadas em regressão através da origem.^{30,31} Todos os procedimentos relacionados ao desenvolvimento e validação dos modelos foram realizados por meio da linguagem R por meio do RStudio.^{32,33}

3. Resultados e Discussão

Para as 200 estruturas, os ΔG_{inj} foram calculados e todos apresentaram valores negativos. Mais especificamente, os valores de ΔG_{inj} estão compreendidos entre -2.394 e -1.127 eV, sendo que esse mínimo e máximo, respectivamente, estão entre as estruturas contidos no conjunto de treinamento.

A partir da abordagem descrita anteriormente, foram obtidos dois modelos que satisfazem as métricas comumente adotadas em modelagem QSPR. Ou seja, esses modelos apresentaram os coeficientes de determinação (R_{Treino}^2 . R_{Teste}^2 , Q_{LOO}^2) acima de 0,60; cumpriram as exigências de significância estatística e multicolinearidade dos descritores, valor-p < 0.05 e VIF \leq 5 (ver Tabela S1), respectivamente; além de satisfazerem a relação entre número de estruturas

no conjunto de treinamento, n, e o número de descritores no modelo, k, $(n > 4k)^{34}$. Os modelos obtidos estão apresentados nas Equações 3-4.

$$\label{eq:model_states} \begin{split} \underline{Modelo\ 2\ (M-2)} &- k = 9, \ F = 37,88; \\ \Delta G_{inj} = -3,55 + 9,24 \times 10^{-1} \ EA - 3,33 \times 10^{-1} \ minsself{minsself} + 7,80 \times 10^{-2} \ nT10 \ Ring + 2,19 \times 10^{-1} \ GATS8s - 3,32 \times 10^{-1} \ MDEN_23 + 1,04 \times 100^{-1} \ MLFER_BO - 1,78 \times 10^{-1} \ MLFER_S + 3,90 \times 10^{-2} \ nS + 1,40 \times 10^{-2} \ RDF30m \end{split}$$

Como mencionado, esses dois modelos apresentam coeficientes de determinação em acordo com os critérios da modelagem QSPR³⁵, ou seja, M-1 e M-2 são capazes de explicar uma satisfatória parcela da variabilidade dos dados. A Tabela 1 apresenta as métricas de ajuste e predição ($R^2_{Treino} e R^2_{Adj} e R^2_{Teste}$), de previsibilidade interna (Q^2_{LOO}) e medidas de erro (RMSE e MAE) para o conjunto de treino e teste.

Com a Tabela 1 é possível notar que os modelos obtidos apresentam um satisfatório ajuste e capacidade de predição $(R^2 > 0,7)^{35}$. Além disso, a diferença $R^2_{Treino} - R^2_{Adj} < 0,3$ indica que o número de descritores presentes no modelo aparenta ser adequado ³⁶. A presença de descritores relevantes e da boa capacidade preditiva é reforçada pelos valores de $Q^2_{LOO} > 0.5$ e pela diferença entre R^2_{Treino} e Q^2 menor que $0,2-0,3^{37}$. A suficiente capacidade preditiva dos modelos é confirmada pelo $R^2_{Teste} \ge 0,5^{35}$.

Além disso, comparando os coeficientes de determinação para o conjunto de treino, R^2_{Treino} , é possível notar que o M-2 apresenta um ajuste sutilmente superior ao M-1. Já em termos de capacidade preditiva, R^2_{Teste} , a mesma tendência é observada. De fato, ao observar os gráficos de ΔG_{inj} predito × ΔG_{inj} teórico para M-1 e M-2 apresentados na Figura 1(a-b) é possível notar uma razoável similaridade na dispersão dos dados.

Com o intuito de avaliar a significância do modelo obtido, o teste de *y-randomization* normalmente é aplicado. Nesse teste, o vetor de propriedade, é aleatorizado N vezes mantendo-se as posições das variáveis inalteradas, resultando em N modelos aleatórios. Espera-se que esses modelos obtidos com a variável resposta aleatorizada apresentem os

Tabela 1. Métricas de variância explicada pelo modelo, previsibilidade e medidas de erro para os conjuntos de treino e teste.

Modelo	\mathbb{R}^2				RMSE			MAE		
	Treino	Ajustado	Teste	LOO ^a	Treino	LOO	Teste	Treino	LOO	Teste
M-1	0,704	0,686	0,701	0,650	0,137	0,149	0,148	0,104	0,113	0,115
M-2	0,724	0,705	0,738	0,686	0,132	0,141	0,139	0,103	0,111	0,108

^aValidação cruzada leave-one-out

Figura 1. Gráficos de ΔG_{inj} predito x ΔG_{inj} teórico para os modelos a) M-1 e b) M-2; e gráficos *Y-randomization* c) M-1 e d) M-2

coeficientes de determinação (R^2_{Treino} e Q²) menores que o do modelo original ³⁷. A Figura 1(c-d) apresentam os gráficos Q²_{LOO} x R² para os testes de *y-randomization* (50 iterações) de cada um dos modelos, na qual é possível notar que os modelos randômicos apresentam baixos valores tanto de R² quanto de Q²_{LOO}. Dessa maneira, é possível dizer que os descritores selecionados apresentam uma possível real conexão com o ΔG_{inj} , ou seja, os descritores presentes nos modelos não foram aleatoriamente obtidos ³⁷.

Para reforçar o processo de validação, as métricas propostas por Roy *et al.*³¹ e Golbraikh e Tropsha³⁰ também foram adotadas, as quais estão apresentadas nas Tabelas 2 e 3. Sendo possível notar que todos os modelos obtidos

obedecem aos critérios estabelecidos ^{30,31}, indicando as satisfatórias capacidades preditivas dos modelos.

Além da avaliação da previsibilidade de um modelo, existem recomendações de que, ao desenvolver um modelo QSAR/QSPR, deve-se definir o chamado Domínio de Aplicabilidade (DA), o qual opera em função do número de parâmetros no modelo e tamanho do conjunto de treinamento³⁸. Mais especificamente, define-se a alavancagem limite ³⁹, $h^* = 3p/n$ – sendo n o número de objetos no conjunto de treinamento e p o número de descritores mais 1 – sendo ideal que os valores de alavancagem de cada um dos objetos dos conjuntos de treino e teste sejam menores que h^* ^{38,39} Graficamente (Figura 2),

Tabela 2	. Métricas	r_m^2	para	validação	interna.
----------	------------	---------	------	-----------	----------

Modelo	r ² _(LOO)	$R_{o(LOO)}^2$	$\mathbf{R}_{o(\mathrm{LOO})}^{'2}$	$r_{m(LOO)}^2$	$r_{m(LOO)}^{'2}$	$\overline{r_{m(LOO)}^2}$	$\Delta r_{m(LOO)}^2$
M-1	0,650	0,649	0,535	0,627	0,430	0,528	0,197
M-2	0,686	0,685	0,595	0,666	0,479	0,572	0,187

Critério: $\overline{r_{m(LOO)}^2} > 0,5; \Delta r_{m(LOO)}^2 < 0,2.$

Tabela 3. Métricas de extras para validação externa.

Modelo	<i>r</i> ²	R_o^2	r_m^2	k	$\frac{\left(\boldsymbol{r}^2-\boldsymbol{R}_o^2\right)}{\boldsymbol{r}^2}$
M-1	0,743	0,711	0,610	0,983	0,043
M-2	0,801	0,757	0,634	0,978	0,054

Figura 2. Resíduos Padronizados x Alavancagem (gráfico de Willams) para a) M-1 e b) M-2

o DA é reportado em um gráfico de resíduos padronizados em função da alavancagem (gráfico de Willams).

A Figura 2 apresenta os gráficos de Willams para os dois modelos. Nota-se que quase os objetos do grupo de treinamento e teste apresentam resíduos padronizados localizados entre ± 3 , exceto os corantes dye67 e dye151. Embora esses corantes apresentem resíduos padronizados relativamente altos, optou-se por mantê-los nos conjuntos utilizados para a modelagem. Além disso, é perceptível que no M-1 quatro corantes (dye6, dye56, dye88 e dye73) apresentaram valores de alavancagem superior ao valor limite ($h^* = 0,1928$), porém apenas dois (dye47 e dye73) estão fora do domínio definido pelo M-2. Assim, observando as métricas de validação interna, externa e o domínio de aplicabilidade, é possível dizer que o modelo M-2 é sutilmente superior ao modelo M-1.

Com o intuito observar a eficiência dos modelos no processo de predição para estruturas não consideradas no grupo de treino e teste, buscamos construir um terceiro conjunto de corantes. Esse novo conjunto foi selecionado do mesmo modo que as 200 estruturas adotadas na modelagem, isto é, segundo a maneira descrita na Seção 2.1. Assim, selecionamos um pequeno conjunto de corantes (16 moléculas), o qual está apresentado na Figura 3.

Figura 3. Novas estruturas para observar as capacidades preditivas dos modelos M-1 e M-2

		$\Delta \mathbf{G}_{inj} \left(\mathbf{eV} \right)$		Erro Perc	entual (%)
Estrutura	Calc	M-1	M-2	M-1	M-2
dye1a	-1,720	-1,796	-1,631	-4,419	5,174
dye2a	-1,948	-2,153	-1,979	-10,524	-1,591
dye3a	-2,165	-2,191	-2,115	-1,201	2,309
dye4a	-1,695	-1,787	-1,687	-5,428	0,472
dye5a	-2,094	-2,371	-2,151	-13,228	-2,722
dye6a	-2,284	-2,084	-2,125	8,757	6,961
dye7a	-1,852	-1,938	-1,909	-4,644	-3,078
dye8a	-1,944	-2,127	-2,100	-9,414	-8,025
dye9a	-2,154	-2,160	-2,134	-0,279	0,929
dye10a	-1,933	-2,080	-2,040	-7,605	-5,535
dye11a	-2,022	-1,942	-2,062	3,956	-1,978
dye12a	-2,076	-1,945	-2,148	6,310	-3,468
dye13a	-2,054	-2,361	-2,334	-14,946	-13,632
dye14a	-1,975	-2,288	-2,264	-15,848	-14,633
dye15a	-1,674	-1,704	-1,667	-1,792	0,418
dye16a	-1,806	-1,815	-1,795	-0,498	0,609

Tabela 4. ΔG_{inj} calculados e preditos para as vinte novas estruturas.

Seguindo a metodologia apresentada na seção 2.2, a energia livre de injeção, , para as vinte estruturas foram calculadas. Além disso, a partir das estruturas otimizadas, foram calculados os descritores estruturais e quânticos necessários para realizar as predições de . Os valores de energia livre de injeção calculados e preditos pelos modelos M-1 e M-2 estão apresentados na Tabela 4.

A partir dos valores dispostos na Tabela 4 é possível notar que os valores preditos pelos modelos M-1 e M-2 são, no geral, similares aos ΔG_{inj} calculados, porém as predições feitas por M-2 tendem a ser mais próximas aos valores calculados. Para esse conjunto, os maiores erros (>13,5%) são observados para as mesmas estruturas, dye13a e dye14a, em ambos os conjuntos. Desse modo, mesmo com essas predições com erros acima dos 10% (dye2a, dye5a, dye13a e dye14a), podemos confirmar que o modelo M-2 apresenta um poder de predição razoavelmente superior ao M-1 e que ambos os modelos podem ser empregados para uma rápida predição da energia de injeção de elétrons.

4. Conclusões

O objetivo deste trabalho foi construir modelos para prever o dos corantes do tipo D- π -A que empregam a trifenilamina como doador. No presente trabalho, a partir de descritores 2D, 3D e quânticos para um conjunto de 200 estruturas, foi possível a obtenção de dois modelos QSPR para a predição a energia livre de injeção de elétrons, ΔG_{inj} . A metodologia empregada para a seleção de variáveis foi válida, uma vez que os modelos M-1 e M-2 cumpriram o conjunto de métricas envolvidas no processo de validação interna e externa de um dado modelo QSPR. Além disso, as métricas mostraram que o modelo M-2 apresentou uma melhor capacidade de previsão que o M-1. Além disso, os modelos obtidos forneceram boas estimativas do ΔG_{inj} utilizando um conjunto diferente de treino e teste usando apenas descritores moleculares obtidos da estrutura otimizada no estado fundamental. Os modelos apresentados permitem avaliar o ΔG_{inj} de um conjunto de corantes sem a necessidade dos cálculos de estado excitado em suas estimativas. E permitem racionalizar as estruturas usando os descritores do modelo.

Informações Suplementares

A Tabelas com os dados e as figuras dos corantes e tabelas com mais informações sobre os modelos estão disponíveis gratuitamente em https://rvq.sbq.org.br

Agradecimentos

Agradecemos o apoio financeiro do Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) e ao Conselho Nacional de Pesquisa (CNPq).

Referências Bibliográficas

 Nijsse, F. J. M. M.; Mercure, J.-F.; Ameli, N.; Larosa, F.; Kothari, S.; Rickman, J.; Vercoulen, P.; Pollitt, H.; The momentum of the solar energy transition. *Nature Communications* 2023, 14, 6542. [Crossref]

- Rabaia, M. K. H.; Abdelkareem, M. A.; Sayed, E. T.; Elsaid, K.; Chae, K. J.; Wilberforce, T.; Olabi, A. G.; Environmental impacts of solar energy systems: A review. *Science of the Total Environment* 2021, 754, [Crossref] [PubMed]
- Pourasl, H. H.; Barenji, R. V.; Khojastehnezhad, V. M.; Solar energy status in the world: A comprehensive review. *Energy Reports* 2023, 10, 3474. [Crossref]
- Gollakota, A. R. K.; Shu, C. M.; Covid-19 and energy sector: Unique opportunity for switching to clean energy. *Gondwana Research* 2023, *114*, 93. [Crossref]
- Arkan, F.; Izadyar, M.; Recent theoretical progress in the organic/ metal-organic sensitizers as the free dyes, dye/TiO2 and dye/ electrolyte systems; Structural modifications and solvent effects on their performance. *Renewable and Sustainable Energy Reviews* 2018, 94, 609. [Crossref]
- Sharma, K.; Sharma, V.; Sharma, S. S.; Dye-Sensitized Solar Cells: Fundamentals and Current Status. *Nanoscale Research Letters* 2018, 13 [Crossref]
- Kim, J. H.; Kim, D. H.; So, J. H.; Koo, H. J.; Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. *Energies* 2022, 15. [Crossref]
- Noorasid, N. S.; Arith, F.; Mustafa, A. N.; Azam, M. A.; Mahalingam, S.; Chelvanathan, P.; Amin, N.; Current advancement of flexible dye sensitized solar cell: A review. *Optik* 2022, 254. [Crossref]
- Cao, Y.; Liu, Y.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.; Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. *Joule* 2018, 2, 1108. [Crossref]
- Biswas, S.; Kim, H.; Solar cells for indoor applications: Progress and development. *Polymers* 2020, *12*, 1338. [Crossref]
- O'regan, B.; Grätzel, M.; A low-cost, high-efficiensy solar cell based on dye-sensitized colloidal TiO2 Films (GRATZEL, 1991). *Nature* 1991, *353*, 737. [Crossref]
- Li, N.; Wang, Q.; Zhou, J.; Li, S.; Liu, J.; Chen, H.; Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. *Molecules* 2022, 27. [Crossref] [PubMed]
- AL-Temimei, F. A.; Mraity, H. A. A.; DFT/TD-DFT investigation of novel D-π-A configuration dyes for improving solar cell efficiency. *Structural Chemistry* 2022, *33*, 859. [Crossref]
- Samanta, P. N.; Majumdar, D.; Roszak, S.; Leszczynski, J.; First-Principles Approach for Assessing Cold Electron Injection Efficiency of Dye-Sensitized Solar Cell: Elucidation of Mechanism of Charge Injection and Recombination. *Journal* of Physical Chemistry C 2020, 124, 2817. [Crossref]
- Tripathi, A.; Kumar, V.; Chetti, P.; Impact of internal (donor/ acceptor) moieties and π-spacer in triphenylamine-based dyes for DSSCs. *Journal of Photochemistry and Photobiology A: Chemistry* 2022, 426. [Crossref]
- Saad Ebied, M.; Dongol, M.; Ibrahim, M.; Nassary, M.; Elnobi, S.; Abuelwafa, A. A.; Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. *Structural Chemistry* 2022, 33, 1921. [Crossref]

- Dutta, R.; Ahmed, S.; Kalita, D. J.; Theoretical design of new triphenylamine based dyes for the fabrication of DSSCs: A DFT/TD-DFT study. *Materials Today Communications* 2020, 22. [Crossref]
- Naik, P.; Elmorsy, M. R.; Su, R.; Babu, D. D.; El-Shafei, A.; Adhikari, A. V.; New carbazole based metal-free organic dyes with D-π-A-π-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. *Solar Energy* **2017**, *153*, 600. [Crossref]
- AL-Temimei, F. A.; Omran Alkhayatt, A. H.; A DFT/TD-DFT investigation on the efficiency of new dyes based on ethyl red dye as a dye-sensitized solar cell light-absorbing material. *Optik* 2020, 208. [Crossref]
- Slimi, A.; Hachi, M.; Fitri, A.; Benjelloun, A. T.; Elkhattabi, S.; Benzakour, M.; Mcharfi, M.; Khenfouch, M.; Zorkani, I.; Bouachrine, M.; Effects of electron acceptor groups on triphenylamine-based dyes for dye-sensitized solar cells: Theoretical investigation. *Journal of Photochemistry and Photobiology A: Chemistry* 2020, 398. [Crossref]
- Consiglio, G.; Gorcynski, A.; Petralia, S.; Forte, G.; Computational study of linear carbon chain based organic dyes for dye sensitized solar cells[†]. *RSC Advances* 2023, *13*, 1019. [Crossref]
- 22. Gopala Krishna, J.; Roy, K.; QSPR modeling of absorption maxima of dyes used in dye sensitized solar cells (DSSCs). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2022, 265. [Crossref]
- Zárate Hernández, L. A.; Camacho-Mendoza, R. L.; González-Montiel, S.; Cruz-Borbolla, J.; The chemical reactivity and QSPR of organic compounds applied to dye-sensitized solar cells using DFT. *Journal of Molecular Graphics and Modelling* 2021, *104*. [Crossref] [PubMed]
- Venkatraman, V.; Chellappan, L. K.; An open access data set highlighting aggregation of dyes on metal oxides. *Data* 2020, 5. [Crossref]
- Yap, C. W.; PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. *Journal of Computational Chemistry* 2011, 32, 1466. [Crossref] [PubMed]
- Fadili, D.; Fahim, Z. M. E.; Bouzzine, S. M.; Alaoui, O. T.; Hamidi, M.; Effects of auxiliary electron-withdrawing moieties on the photovoltaic properties of D-π-A'-π-A phosphonic acidbased DSSCs. *Computational and Theoretical Chemistry* 2022, *1210.* [Crossref]
- Govindarasu, R.; Subramanian, M. K.; Ahamad, T.; Majeed Khan, M. A.; First principle investigation of new metal-free organic dye molecular for DSSCs: effects of π-conjugated groups. *Molecular Simulation* 2021, 47, 659. [Crossref]
- Antoine Stevens and Leornardo Ramirez-Lopez (2022).; An introduction to the prospectr package. R package Vignette R package version 0.2.6. [Link]
- 29. David Kepplinger (2020). gaselect: Genetic Algorithm (GA) for Variable Selection from High-Dimensional Data. R package version 1.0.9. [Link]
- Golbraikh, A.; Tropsha, A.; Beware of q2! Journal of Molecular Graphics and Modelling 2002, 20, 269. [Crossref] [PubMed]

- Roy, P. P.; Paul, S.; Mitra, I.; Roy, K.; On two novel parameters for validation of predictive QSAR models. *Molecules* 2009, *14*, 1660. [Crossref] [PubMed]
- 32. R: The R Project for Statistical Computing. [Link]
- 33. RStudio | Open source & professional software for data science teams RStudio. [Link]
- Tropsha, A.; Gramatica, P.; Gombar, V. K.; The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. *QSAR and Combinatorial Science* 2003, *22*, 69. [Crossref]
- Tropsha, A.; Best practices for QSAR model development, validation, and exploitation. *Molecular Informatics* 2010, 29, 476. [Crossref]
- Rajak, H.; Sivadasan, S.; Validation of QSAR Models-Strategies and Importance. *International Journal of Drug Design and Discovery* 2011, 2, 511. [Link]

- Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T. D.; McDowell, R. M.; Gramatica, P.; Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. *Environmental Health Perspectives* 2003, *111*, 1361. [Crossref] [PubMed]
- Directorate, E.; ENV/JM/MONO(2007)2 2 OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69 GUIDANCE DOCUMENT ON THE VALIDATION OF (QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSHIP [(Q)SAR] MODELS. 2007.
- Gramatica, P.; Principles of QSAR Modeling. International Journal of Quantitative Structure-Property Relationships 2020, 5, 61. [Crossref]