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A Chemoenzymatic Process to Achieve Optically 
Active Mandelic Acid Employing Continuous-Flow 
Resolution of Cyanohydrin as a Key Step

Síntese Químio-Enzimática do Ácido Mandélico Opticamente Ativo 
Empregando a Resolução em Fluxo Contínuo do Precursor Cianoidrina 
como Etapa Chave

Bruno Bernardi Aggio,a Alfredo Ricardo Marques de Oliveira,a  Leandro Piovan,a,*  Juliana 
Christina Thomasb,#  

Optically active mandelic acid is important to organic synthesis in stereochemical investigations and as a 
precursor of different pharmaceuticals. Therefore, several synthetic methodologies have been developed 
for its synthesis, including biocatalytic approaches. Among the biocatalyzed reactions, lipase-mediated 
enzymatic kinetic resolution (EKR) reactions are advantageous, since both enantiomers can be achieved. 
However, limitations are observed in direct EKR of mandelic acid and its ester derivatives, related to 
enzyme inhibition and structural dependence to achieve high enantioselectivity. Herein, a chemo-enzymatic 
approach is proposed to achieve optically active mandelic acid from a continuous-flow lipase-mediated 
resolution of mandelonitrile followed by separation and chemical hydrolysis of nitrile moiety. Using this 
strategy, both mandelic acid enantiomers were obtained in good isolated yields and high enantiomeric 
excesses (R enantiomer: 70% yield; e.e. = 94%; S enantiomer: 80% yield; e.e. = 98%).
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1. Introduction

Optically active α-hydroxyacids are very important to enantioselective synthesis.1 For 
instance, mandelic acid enantiomers are widely used in stereochemical investigations as 
resolution agents2-5 and as precursors of several synthetic pharmaceuticals,6, 7 such as oxybutynin,8 
cyclandelate,9 pemoline,10 besides several mandelate esters derivatives with important biological 
activity.11 Due to importance of optically active mandelic acid and the high costs associated with 
buying enantiopure substances,12 several synthetic methodologies have been developed over 
the years, including stereoselective biocatalyzed reactions,13 to synthesize mandelic acid in its 
optically active form. Biocatalytic approaches include oxidoreductases-mediated oxidation of 
primary alcohol14-18 or ketone reduction19-23 (Scheme 1 – a, b); hydroxynitrile lyases-mediated 
(HNLs) addition of hydrogen cyanide to benzaldehyde, followed by chemical hydrolysis24, 25 
(Scheme 1 – c) or coupling with nitrilases26-29 (Scheme 1 – d); classic and dynamic kinetic 
resolution of mandelonitrile employing nitrilases30-38 (Scheme 1 – e); decarboxylation mediated 
by arylmalonate decarboxylase39, 40 (AMDase; Scheme 1 – f); enzymatic kinetic resolution 
(EKR) mediated by lipases, via acylation41-51 (Scheme 1 – g) or deacylation52-57 (Scheme 1 – h) 
of mandelic acid or its ester derivatives.

EKR approaches are well established in literature since they allow to isolate both 
enantiomers in the process.58 Moreover, several advantages related to the use of lipases 
can be observed, such as high chemo, regio and stereoselectivity, they do not need any 
cofactor and display a broad substrate specificity, among others.59, 60 Lipase-mediated EKR 
of mandelic acid and derivatives is not unheard, but several drawbacks are associated to it. 
Reactions involving the hydroxyl moiety (Scheme 1 – g and h) in mandelate esters are strongly 
dependent of ester moiety, taking to products, sometimes, with low stereoselectivity.61, 62 
Only few data are available concerning to the use of carboxylic functional group of mandelic 
acid in esterification63, 64 reactions or its ester derivatives in hydrolysis65, 66 and amination67 
reactions. Furthermore, it is known that mandelic acid oneself can cause lipase inhibition 
in high concentrations.68 An alternative and less exploited approach to synthesize optically 
active mandelic acid is lipase-mediated EKR of its cyanohydrin derivatives. Although EKR of 
cyanohydrins usually requires long reaction times to achieve high enantiomeric excesses, we 
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had developed a protocol to perform EKR in continuous-
flow mode,69 which can aggregate many advantages when 
combined with biocatalysis, as well as fitting in some 
principles of green chemistry.70-73 Employing this protocol, 
cyanohydrins could be obtained with high productivity, 
presenting short reaction times and without any loss of 
lipase enantioselectivity.69 Now, as a proof of concept, 
we have expanded our approach towards the synthesis of 
optically active mandelic acid, employing two sequential 
reactions: the EKR of a mandelonitrile precursor via 
deacylation in continuous-flow mode followed by an acidic 
hydrolysis, presenting good enantioselectivity and yields.

2. Results and Discussion

2.1. Enzymatic kinetic resolution in continuous-flow mode 

The first step was a preparative EKR reaction of 
mandelonitrile acetate ((RS)-2) in continuous-flow mode. 

For this, a continuous-flow reactor was filled with the 
supported biocatalyst (Novozym 435®) and reagents were 
pumped into it employing a flow rate of 0.1 mL min-1 
for 2 cycles (total residence time 8.6 min), as previously 
optimized,69 resulting in 49% conversion and yielding (S)-3 
and (R)-2 in high optical purity (98% and 94% enantiomeric 
excess) (see Experimental Section and Supplementary 
Material for details) (Scheme 2).

Compounds (S)-3 and (R)-2 were purified using column 
chromatography, and could be isolated in high yields (37% 
and 34%). These compounds were employed as optically 
active starting materials in the synthesis of mandelic acid 
enantiomers.

2.2. Synthesis of optically active mandelic acid 

After the enzymatic step, we believed nitrile moiety 
of enantioenriched (S)-3 would be easily hydrolyzed to 
produce the corresponding (S)-mandelic acid. However, 
very low yields and cyanide retro-addition reaction were 
observed employing that optically active starting material. 
Thus, we decided to optimize the reaction conditions 
for nitrile hydrolysis employing racemic mandelonitrile 
(RS-3) as starting material. For this, different acid sources 
for hydrolysis were investigated, as well as the extraction 
procedure (Table 1).

Sulphuric acid was tested as an acid source for hydrolysis 
(Table 1 – entry 1), resulting in a very low conversion rate 
and low yield (<10%). When p-toluenesulphonic acid (PTSA.
H2O) was tested, no conversion of mandelonitrile (RS-3) 
into mandelic acid (RS-1) was observed, neither at room 
temperature nor when heated to 80 oC. Only by using of 
concentrated HCl as acid source mandelic acid formation 

Scheme 1. Biocatalytic routes to directly achieve optically active 
mandelic acid (1)

Scheme 2. Continuous-flow EKR of mandelonitrile acetate ((RS)-2)

Table 1. Hydrolysis of RS-3 to mandelic acid (RS-1)

 

Entry Reagents Note Yield Ref.

1 H2SO4
a,b Liquid-liquid extractiond <10 -

2 PTSA and H2O in toluene Liquid-liquid extractiond - -

3 Hot HCla,b Liquid-liquid extractiond 37 74

4 HCla,c Liquid-liquid extractiond 41 75

5 HCla.c Solvent evaporation 74 75
a 12 mol L-1; b 80 oC; c Room temperature; d Organic solvent: Et2O



Aggio

369Vol. 15, No. 2

was observed. Reaction employing HCl at room temperature 
resulted in higher yield (41%) than when hot HCl (80 oC) 
was used, since reactions were carried out in open vessels 
and high temperature caused some loss by evaporation 
(Table 1 – entries 3 and 4). It is worth comment that, due to 
mandelic acid high solubility in water, extractions using ethyl 
acetate, dichloromethane or diethyl ether were considered 
not efficient. Among the cited organic solvents, diethyl ether 
was the best one resulting in 40.6% yield (Table 1 – entry 4).

The switch of extraction procedure to evaporation of 
reaction media (HCl 12 mol L-1) in a water steam bath 
resulted in a significant increase of reaction isolated yield 
to 74% (Table 1 – entry 5).

The optimized reaction conditions for the whole 
processes were: HCl 12 mol L-1 as acid source and solvent, 
room temperature, solvent evaporation and purification by 
recrystallization in benzene (Table 1 – entry 5). After the 
optimization for racemic standard, reaction conditions were 
applied in the synthesis of optically active mandelic acid.

It is important to highlight that, for mandelonitrile 
acetate ((R)-2), nitrile hydrolysis employing previously 
optimized conditions led to very low yields. Due to this 
fact, we first hydrolyzed acyl moiety of (R)-2 to give (R)-3 
and then employed it as start material for nitrile hydrolysis.

Finally, mandelonitrile enantiomers ((R)- and (S)-3) 
were hydrolyzed and optically active mandelic acid 
could be obtained in good yields (70% for R and 80% 
for S enantiomer). After all reaction steps, mandelic acid 
enantiomers could be synthesized in 21% (for R enantiomer) 
and 30% (for S enantiomer) global yield.

The entire synthetic route is presented in Scheme 3.
Since mandelic acid detection was not possible via gas 

chromatography, in order to determine the enantiomeric 
excesses of (R) and (S) mandelic acid, they were converted to 
their corresponding 2,2-dimethyl-5-phenyl-1,3-dioxolane-
4-one (1a) derivative (Scheme 4) (see Experimental Section 
for details), resulting in 94% and 98% enantiomeric excess, 
respectively, indicating that there was no loss of optical 
purity in the hydrolysis step.

In summary, a successfull chemo-enzymatic process 
was applyied to synthesize optically active mandelic acid. 

In this process, mandelonitrile was produced by a previsouly 
developed continuous-flow resolution protocol in high 
optically purity and, after an extensive study of nitrile 
moiety hydrolysis, mandelic acid was then synthesized in 
good yields and high optically purity.

3. Conclusions

A chemo-enzymatic protocol to synthesize optically active 
mandelic acid has been developed. Continuous-flow EKR step 
was pivotal to achieve high optically purity mandelonitrile and 
its acetate derivative. These process can be easily scaled-up 
to provide high amounts of these optically active compounds. 
Subsequent chemical hydrolysis of nitrile moiety employing 
optimized conditions resulted in reasonable yields and no 
optical purity was lost during this reaction. Employing this 
protocol, optically active mandelic acid could be obtained in 
good isolated yield and optically purity.

4. Experimental

4.1. Synthesis of mandelonitrile acetate (RS-2) and 
mandelonitrile (RS-3)

Benzaldehyde (2.122 g, 20 mmol) was added dropwise 
to a solution of Na2S2O5 (2.282 g, 12 mmol) in water 
(10 mL), which was previous cooled in an ice bath and 
maintained under continuous stirring. After 10 min, a 
solution of NaCN (0.490 g, 20 mmol) in cold water (10 mL) 
was added dropwise and the mixture was stirred at room 
temperature for 24 h. The reaction media was extracted 
with CH2Cl2 (3 x 15 mL), dried with MgSO4, filtered and 

Scheme 3. Chemo-enzymatic route to synthesize optically active mandelic acid

Scheme 4. Derivatization of mandelic acid (1) to compound 1a
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the solvent was evaporated under reduced pressure giving 
mandelonitrile (RS-3). For the synthesis of mandelonitrile 
acetate, previously synthesized cyanohydrin was dissolved 
in CH2Cl2 (20 mL) and acetic anhydride (2.84 mL, 30 mmol) 
and DMAP (one crystal) were added. The mixture was 
stirred at room temperature overnight. Then, the reaction 
media was washed with a solution of NaHCO3, dried 
with MgSO4, filtered and solvent was evaporated under 
reduced pressure.75 Remaining aldehyde was removed via 
crystallization as its bisulfide salt. Yields and spectroscopic 
characterization are in accordance to our previous work.69

4.2. Enzymatic kinetic resolution of RS-2 in continuous-
flow mode

Mandelonitrile acetate (RS-2) (2.628 g, 15 mmol) and 
n-butanol (5.50 mL, 60 mmol) were dissolved in toluene 
(150 mL), and the solution was eluted through a reactor 
(74.0  x 4.6 mm, internal volume 4.3 mL) filled with 
Novozym 435® (200 mg) with a flow rate of 0.1 mL min-1 for 
two cycles (total residence time = 8.6 min) at 50 oC, resulting 
in (R)-2 (94% e.e.) and (S)-3 (98% e.e.). Enantiomeric 
excesses were determined by chiral GC analysis. Then, 
solvent was removed under reduced pressure and the mixture 
was separated by column chromatography (hexanes/ethyl 
acetate 10:1). The solvent was removed and (R)-2 and (S)-3 
were obtained in 34% and 37% yield, respectively.69

(R)-Mandelonitrile acetate. [α]D
20 = +3.7 (c = 0.5, CHCl3; 

e.e. 94%). Ref.[76] [α]D
25.8 = 4.1 (c = 0.5, CHCl3; e.e. 85%).

(S)-Mandelonitrile. [α]D
20 = -27.3 (c = 0.5, CHCl3; e.e. 

98%). Ref.[77] [α]D
20 = -8.6 (c = 0.5, CHCl3; e.e. 81%).

4.3. Synthesis of (R)-mandelonitrile ((R)-3)

(R)-Mandelonitrile acetate ((R)-2) (1.051 g, 6 mmol) 
was dissolved in ethanol (10 mL) and PTSA (5% w/w) was 
added. The reaction media was maintained under magnetic 
stirring at 50 oC for 72 h. After that, ethanol was removed 
under reduced pressure, the crude material was dissolved 
in CH2Cl2 (10 mL) and washed with a solution of NaHCO3, 
dried with MgSO4 and solvent was evaporated under reduced 
pressure.78 (R)-Mandelonitrile ((R)-3) was obtained in 87% 
yield, 94% e.e. and spectroscopic data are in accordance to 
racemic standard.

4.4. Synthesis of (R) and (S) mandelic acid (1)

Optically active (R)- or (S)-mandelonitrile (0.666 g, 
5 mmol) and HCl (36%, 5.8 mL) were added to a mortar. 
The reaction media was left without stirring at room 
temperature for 12 h. Then, solvent was removed via 
evaporation with water steam bath and left drying overnight 
at room temperature. The crude residue was transferred 
to a beaker and dissolved in ethyl acetate (35 mL), under 
magnetic stirring for 5 min. This solution was filtered to 
remove NH4Cl (remaining as a solid) and the solvent was 

removed under reduced pressure. After that, the solid residue 
was powdered, washed twice with cold benzene (2 x 4 mL, 
5-10 oC) and then recrystallized in benzene (22 mL), filtered 
off in a sintered glass funnel (5-10 oC) and washed with cold 
benzene (8 mL, 5-10 oC) to give (RS)-1, (R)-1 and (S)-1 in 
74%, 70% and 80% yield, respectively.75

(RS)-Mandelic Acid. White solid. MP: 118 oC. Yield: 74%.
1H NMR (200 MHz, MeOD, TMS), δ 5.14 (s, 1H); 

7.30–7.48 (m, 5H). 13C NMR (50 MHz, MeOD), δ 72.8; 
126.5; 127.8; 128.0; 139.4; 174.8. IR (KBr) ν/cm-1 3400, 
3029, 2967, 2716, 2628, 1717, 1452, 1299, 1190, 1059, 
938, 888, 732, 696.

(R)-Mandelic Acid. White solid. MP: 118.0-120.5 
oC. [α]D

20 = -116.3 (c = 0.25, H2O; e.e. 94%). Ref.[79]  

[α]D
20 = -121.6 (c = 1.0, H2O; e.e. 80%).

(S)-Mandelic Acid. White solid. MP: 130.5 oC.  
[α]D

20 = +143.2 (c = 0.25, H2O; e.e. 98%). Ref.[80]  

[α]D
20 = +151.0 (c = 1.0, H2O; e.e. 99%).

4.5. Determination of enantiomeric excess of optically 
active mandelic acid (1)

In a 4 mL sealed vial, optically active mandelic acid 
(0.045 g, 0.25 mmol) was dissolved in acetone (2 mL) and 
PTSA was added (10 mg). The reaction media was left 
stirring at 50 oC for 3 h.81 After that, one aliquot (200 µL) 
was taken from reaction media, washed three times with a 
solution of NaHCO3 (3 x 500 µL), dried over MgSO4, filtered 
and analyzed via gas chromatography. Compounds (R)-1a 
and (S)-1a were obtained in 94% and 98% enantiomeric 
excess, respectively.
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Supporting information for this article is available free 
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