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Lipases have shown highly relevant biotechnological potential as catalysts in organic synthesis 
reactions, especially in non-aqueous media, allowing for higher-yielding and more simplified 
production processes. Incorporating this technology in large scale requires the use of economically-
viable techniques, such as enzyme immobilization onto nanomaterials. The main scientific interest in 
immobilization protocols is to obtain biocatalysts that present better activity, selectivity, stability, and 
protein-purification properties, when compared to their free form. In this work, we review some of the 
properties of lipases and their applications, discuss the problems inherent in free-enzyme protocols, 
present immobilization techniques as solutions to these issues, and explore some applications of 
immobilized enzymes. Furthermore, the use of nanomaterials, their properties, and their relevance 
to the topic are also discussed. This study presents a review of the main advantages and the recent 
developments in the preparation of lipases immobilized onto nanomaterials as biocatalysts to be used 
in sustainable routes of biodiesel production.
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1. Introduction

The growing interest in biocatalytic processes in recent decades has proved their promising 
role as alternatives in the development and optimization of industrial technologies for sustainable 
energy production.1 The use of several enzymes as biocatalysts, particularly lipases,2–5 is 
noteworthy,6,7 since their participation in the industry market has increased significantly due 
to numerous advantages over the traditional chemical technology, concerning their specificity, 
efficiency, and environmental compatibility.8,9 Thus, enzymes are potentially attractive 
replacements and allow for a myriad of applications in different processes, among which is 
the production of biofuels and other bio-derived products.10,11

There are several studies in the literature looking into the production of sustainable energy 
using enzymatic catalysis to reduce environmental impact. These studies, especially in the 
realm of biofuels such as biodiesel, show that the use of biocatalysis enables the obtainment 
of products at higher yields and purity degrees, prevents soap formation, and allows for the 
use of milder reaction conditions that consequently reduce energy requirements during, and 
waste generation as a result of, the production process.12–16 Other claimed advantages are the 
possibility of employment of several cheap raw materials and the ease of glycerol recovery.17

However, because these are biological macromolecules, the cost of biocatalysts and the 
reaction conditions commonly used in industrial processes can limit the activity and the reuse 
of enzymes in their free form.18–20  An alternative to circumvent this is to follow protocols of 
immobilization or encapsulation of such enzymes onto solid supports. These provide an increase 
in their stability, while facilitating their separation from the reaction medium, therefore enabling 
mulitple biocatalyst reuse.9,21–23

Within this context, nanostructure supports appear as strong alternatives to their conventional 
counterparts, since they provide additional advantageous properties such as higher surface areas. 
This makes them capable of retaining a higher enzymatic load per unit of particle mass and 
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promotes a significant increase in mass transfer efficiency, 
consequently reducing diffusion limitations, and easing 
catalyst and product recovery.24–27 These advantages deem 
enzymes immobilized on nanoparticles sturdier and more 
attractive for a range of industrial applications.

Thus being, the present review discusses the underlying 
scientific context, the challenges, and the opportunities in the 
use of lipases for industrial processes, especially in biodiesel 
synthesis. It also highlights relevant enzyme properties and 
the strategies commonly used for immobilization. Finally, the 
use of nanomaterials, their properties, and their importance 
to existing immobilization protocols are discussed.

2. Lipases

Among the extensive range of existing enzymes, lipases 
(triacylglycerol ester hydrolases, E.C.3.1.1.3) are the most 
widely used28–31 due to their inherent proprieties of interest, 
such as high efficiency and enantioselectivity.32–34 By 
definition, lipases are carboxylesterases that catalyze the 
hydrolysis of triglycerides and other carboxylic acid esters,35 
releasing glycerol and free fatty acids36–39. Under specific 
conditions, lipases can also perform synthesis reactions, 
such as esterification, transesterification (interesterification, 
acidolysis, and alcoholysis), aminolysis, and lactonization.40–42 
Additionally, lipases have a specific and optimal pH activity 
range,31 and they do not require the presence of a cofactor.43,44 
These biocatalysts serve a broad area of interest, as they act in 
both aqueous and organic environments.45

Structurally, most lipases have hydrophobic and hydrophilic 
regions, in which the enzyme near the active site undergoes 
enzyme-substrate interactions to promote product formation.32,46 
These interactions trigger conformational (open- and closed-) 
changes in the enzyme, depending on which lipid interface is 
in operation, influencing its catalytic activity.47,48

In the presence of organic-aqueous interfaces, the 
catalytic activity allows most lipases to undergo a 
phenomenon known as interfacial activation,17–19 in which an 
increase in its activity occurs, observed only in the presence 
of insoluble surfaces. The optimal catalytic activity of 
lipases refers to the process of adsorption between lipase and 
micelle surface, in addition to the transition state of closed 
and open lipase conformations (Figure 1).49,50

During interfacial activations carried out in homogeneous 
aqueous media, lipases present a structure in which the 
active site is completely isolated from the reaction medium 
by a polypeptide chain (the ‘lid’), which prevents the 
substrate from accessing the active site.50,51 The lid has 
hydrophobic residues on its inner face that interact with 
the hydrophobic regions around the active site when the 
lipase is in a closed, inactive conformation, preventing the 
formation of reaction products.29,50 However, when exposing 
lipases to hydrophobic interfaces, there is a conformational 
rearrangement that promotes the opening of the lid, which 
results in an active enzyme conformation, consequently 
leaving the active site free and accessible to substrates.52,53 
This movement, which alternates between the active and 
inactive forms of the enzyme, takes place through chemical 
bonds between the amino acid residues of the lid with 
other amino acid residues present on the enzyme surface,50 
as shown in Figure 1.  The lipase structure from Candida 
antarctica (PBD code: 3GUU) has been resolved both in 
its closed and open conformation (Figure 1).

3. Lipase Applications 

Due to the unique properties that lipases present, 
they can be employed in several industrial sectors, 
placing them as one of the most relevant biocatalysts for 
biotechnological applications.1,29 They are often used in 
the fine chemical,23,54 food additive,55–59 agrochemical,60–62 
polymer,63,64  biodiesel,65–69 detergent,70–72 and cosmetic 
industries,73–75 among others.46,76,77

In the food industry specifically,25 lipases can be used as 
flavor modifiers via synthesis of short-chain fatty acids esters 
and alcohols, and in the obtainment of products of increased 
nutritional value via the modification of triacylglycerol 
structures by inter- or transesterification.78,79  Table 1 
presents the main sources of lipases and their applications 
in different industrial sectors.

Lipases are used, for instance, as emulsifiers in bakery 
applications.81,91 They can also be used in many other 
processes, such as in the manufacturing dairy products, 
production of butter and milk equivalents,59 animal food,92 etc. 

Moreover, the chemical and pharmaceutical industries 
are examples of sectors that use these enzymes as 

Figure 1. Closed and open conformation of lipase A from Candida antarctica (PBD code: 3GUU; 3D structure obtained with PyMol 2.2.2)
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biocatalysts. Enzyme-aided processes in these areas have 
grown considerably in recent years. Lipases can be used in 
surfactant production93 solving racemic mixtures,7 detergent 
formulation,94 treatment of residues rich in oils and fats, as 
well as in healthcare, medicine production, diagnostics, 
cosmetics and antibiotics.19

In the biofuel industry, biodiesel production is constantly 
cited as one of the possible applications of lipases.14,16,18,95,96 
Biodiesel has gained strong relevance in recent times due to 
the possibility of fossil fuel substitution. The environmental 
issues identified and related to the emission of gases from 
fossil fuels have driven research into developing alternative 
fuels, including biodiesel.97 The use of new biofuel 
production techniques (for bioethanol and biodiesel) is 
a viable alternative to replace fossil oils, since these are 
considered green technologies.15 

4. Lipase Immobilization

Enzymes for enzymatic processes can be employed in 
free or immobilized forms.23 However, using free enzymes 
usually results in molecule instability, rapid loss of catalytic 
activity, and the impossibility of separating and regenerating 
catalysts for future reuse. These factors directly and strongly 

influence process control, which consequently affect the the 
associated manufacturing cost, especially in processes run 
under industrial scales.19,98

Based on the different lipase properties, the range of 
applications enabled by their immobilization, as well as the 
intense current research on the topic, researchers around the 
world have been looking for new ways of using, improving, 
and developing existing immobilisation protocols. It is clear 
that the application of lipases in biotechnological process 
is considered a flourishing and promising research field.29

Enzymatic immobilization is achieved when enzyme 
molecules are confined to a solid matrix (‘support’) 
different from that in which the substrate or products are 
present,99 i.e., by binding the enzymes or inserting them 
into a suitable support material.29 The primary purpose of 
enzyme immobilization is to create biocatalysts that are 
resistant enough to work under different, and sometimes 
severe, operational conditions, while presenting improved 
stability, catalytic activity, and the possibility of reuse of 
biomolecules over successive catalytic cycles, prolonging 
their lifetime.100,101 Many types of supports and materials 
have been described as efficient for lipase immobilization in 
the literature, among which are silica, glass beads, ceramics, 
chitosan, graphene, magnetic supports, and polymeric 
microspheres.102

Table 1. Applications of lipases in several industrial sectors and their deriving products.

Lipase Industry sector Chemical synthesis Final product/process Ref

Penicillium canesense BPF4 

Pseudogymnoascus roseus BPF6 Detergent Fat hydrolysis Oil removal 71

Hermomyces lanuginosus Chemical Hydrolysis Docosahexaenoic acid 80

Lactobacillus helveticuscepa Dairy product Milk fat hydrolysis, cheese 
ripening, butter modification

Development of flavoring agents in milk, 
cheese, and butter

59

Fusarium oxysporum Bakery Flavor enhancer Shelf-life extension 81

Lipase B from Candida antarctica Drink Flavor Beverages/soft drinks 82

Malbranchea cinnamomea Meat and fish Flavor development Fat removal, meat and fish products 83

Aspergillus Healthy food Transesterification Food products with nutritional appeal 84

Rhizopus oryzae Chemical Transesterification Biodiesel 66

Penicillium citrinum Fat and oil Transesterification, hydrolysis Cocoa butter, margarines, fatty acids, glycerol, 
mono- and diglycerides

78

Rhizopus oryzae Chemical Transesterification Biodiesel 67

Aspergillus Pharmaceutical Transesterification, hydrolysis Specific, digestive lipids 85

Candida rugosa Chemical Esterification Biolubricants 68

Candida antarctica lipase B Cosmetic Synthesis Emulsifiers, Humidifiers 75

Rhizomucor miehei Chemical Esterification Biodiesel 3

Yarrowia lipolytica Paper Hydrolysis Paper quality improvement 86

Rhizomucor miehei Chemical Esterification Catalytic property improvement 87

Aspergillus Cleaning Hydrolysis Fat removal 84

Yarrowia lipolytica Leather Hydrolysis Leather products 86

Candida antarctica Chemical Esterification Biodiesel 14

Lipase B from Candida antarctica Cosmetic Aminolysis reactions Amphiphilic amide production 75

Pseudomonas fluorescens Chemical Transesterification Biodiesel 88

Rizomucor miehei Chemical Hydrolysis Selective hydrolysis of fish oil 89

Pseudomonas fluorescens Chemical Enantioselectivity, synthesis Construction of chiral blocks 90
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Ideally, the immobilized enzyme should exhibit a superior 
catalytic activity compared to its free form.102 Besides, there 
should be no changes to either the active site of the enzyme or its 
structural conformation.103 However, enzymatic immobilization 
may in fact increase or inhibit enzyme activity and stability.104 To 
resolve the instability problems and optimize them for various 
applications, different physical and chemical immobilization 
methods are used. Some of those immobilization techniques 
(Figure 2), such as adsorption, encapsulation, entrapment, 
covalent bonding, and crosslinking22,23,100 have been reported 
in the literature and are discussed below. 

4.1. Adsorption

Physical adsorption is a direct and reversible 
immobilization method involving enzymes adsorbed onto 
the support material through a physical or chemical way. 
It is considered the simplest method of immobilization,105 
which justifies being the one most employed industrially, 
usually involving lipases immobilization onto hydrophobic 
supports.45

The forces established between the enzyme and the 
support during immobilization are weaker, such as Van der 
Waals electrostatic forces, ionic, and hydrogen bonding 
interactions.22 Although these interactions are fragile, 
they are stable enough to allow proper bonding and 
stabilization,106 especially when reactions are carried out in 
organic media since, under these conditions, the enzyme is 
insoluble in nonpolar environments.

In short, the adsorption process takes place by mixing 
an aqueous enzyme solution with the support material 
for a set amount of time.107 The reaction runs at preset 
and constant conditions of temperature, pH, and ionic 
strength.105 Sequentially, the enzyme excess is washed from 

the support.108 The strict control of these reaction conditions 
is essential, as these can alter the ideal parameters and 
compromise adsorption rates and yields.

The technique is advantageous due to the easy and 
straightforward immobilization protocol followed, which 
results in reduced costs. Moreover, unlike other techniques, 
the support does not need previous activation, since there 
are no significant changes to the enzyme conformational 
structure.22 On the other hand, an easy desorption can 
be caused by inconsistent control of temperatures, pHs, 
and ionic forces, which can lead to enzymatic losses.109 
However, this facilitated desorption can also be seen as 
advantageous, as it allows for an easier recovery of the 
support after enzyme denaturation, thus enabling its reuse 
in various subsequent cycles.110

Nevertheless, some key factors must be taken into 
account so that immobilization by adsorption is carried out 
successfully. These include protein sizes, adsorbent surface 
area, pore size,111 and enzyme concentration. It is worth 
highlighting that the amount of enzyme adsorbed per amount 
of support increases with the concentration of the biocatalyst, 
which may lead to rapid or premature saturation.106,112

4.2. Encapsulation and entrapment

Encapsulation and entrapment in a small space are also very 
common methods in enzyme immobilization protocols.20,106,113 
These are based on the in situ polymerization of the porous 
matrix around the biocatalysts to be immobilized.114 Thus, the 
enzyme is incorporated as part of the reaction polymerization 
mixture. For both encapsulation and entrapment methods, gel 
pore size is a significant factor to be considered.115

Encapsulation refers to the envelopment of the enzyme 
in a semipermeable membrane or microcapsule. When 

Figure 2. Main techniques used in enzyme immobilization
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confinement specifically occurs in a polymeric capsule 
or matrix, this is called entrapment.1 These membranes 
or matrices should have small enough pores to allow the 
passage of enzymes (macromolecules), but offer free 
passage to products and substrates.116 The enzymes that 
remain in solution protect them from external effects.106 
Despite the advantage of not causing enzyme structural 
changes, this method may not be applicable in some cases, 
such as when the enzyme-substrate complex is too large to 
pass through the pores of the encapsulating materials.106,117

The use of polysaccharide alginate as a support is one 
of the most common routes for encapsulation.118 Enzyme 
immobilization onto alginate occurs easily by dripping a 
solution of alginate containing the enzyme into a solution 
rich in calcium ions.119 The formed polymer network then 
traps the enzyme in micropores, giving the encapsulated 
enzyme better protection, as it blocks its direct contact with 
the reaction medium; as a consequence, inhibition effects 
are reduced.22,120 

Enzymatic immobilization by entrapment is done based 
on the specific enzyme occlusion within a restrictive porous 
structure. Thus being, the process allows the diffusion 
of substrates and products, while blocking the protein 
penetration through the pore structure.105 After entrapment, 
lipases are then attached to the polymeric matrix or capsule, 
causing restricted diffusion. The types of membranes used to 
this end include cellulose acetate, polycarbonate, collagen, 
and Teflon.121

The maintained stability is pointed out as an advantage 
of these protocols,12 since physical interactions or chemical 
bonds are not established between the enzyme and the 
support. Also, a high surface area of contact between the 
substrate and the enzyme can be provided by a relatively 
small volume, allowing for higher catalytic activities.110 
Another advantage is the possibility of immobilizing 
multiple enzymes to the matrix in the same process.

As for disadvantages, only low molar mass substrates can 
be used in this type of processes due to the fact that proteins 
with high molar masses cannot penetrate the capsules.122 
Other disadvantages to be mentioned are the possibility of 
enzyme inactivation during the immobilization protocol, 
which results in a need for high enzyme concentrations to 
guarantee encapsulation, and in possible inhibitory effects 
by products or substrates within the porous matrix.123 
Additionally, apart from the limited mass transfer rates from 
the matrix pores to the immobilized enzyme, the support 
can become corrupted due to polymerization and release 
the enzyme, resulting in its inactivity. This also indicates 
that the method presents a low capacity of enzyme charge 
retention.122,124

4.3. Covalent attachment

Covalent bonding occurs by reactive support groups, 
activated or not, with the functional groups of the group-

linking enzyme - NH
2
, -COOH, -OH, -SH, among others.125 

This is preferably carried out under mild physiological 
conditions, low temperatures and ionic strengths, optimum 
pHs, and often in the presence of substrates, in order to protect 
the active site of the enzyme and prevent activity loss.106 

The covalent immobilization protocol is employed 
when the final product needs to be entirely free of enzyme 
residues.22 Therefore, to successfully achieve the product 
of interest, a high stability between the biocatalyst and the 
matrix must be guaranteed. Also, it is essential to highlight 
that this procedure requires the chemical modification of 
the support surface in order to obtain reactive intermediate 
groups; this modification is made through activation 
reactions. Glutaraldehyde (GLU) is commonly used in this 
context as a reagent in support-activation reactions, or as 
a spacer arm, due to its low cost and high reactivity.45 The 
bonds formed between the enzyme and glutaraldehyde are 
stable owing to its the good control of key parameters, such 
as pH, ionic strength, solvents, and temperature.22

This method presents high thermal and operational 
stability in comparison to other techniques. The biocatalyst 
also presents higher resistance to variations in pH, 
temperature, and to incubation in organic solvents, so the 
enzyme does not desorb from the support. In contrast, 
compared to other methods and considering the total cost of 
the process, there is a relatively lower immobilization yield, 
since the enzyme-support binding process is irreversible.122 
Another disadvantage is that this protocol can lead to partial 
or total loss of catalytic activity due to changes in protein 
morphology induced by multiple attachment points between 
the enzyme and the support.22,106

4.4. Crosslinking

A particular type of covalent bond immobilization 
is crosslinking.9 In this method, the enzymes are tightly 
linked together by the use of a multifunctional compound 
such as glutaraldehyde.126 The binding efficiency of this 
method deems enzymatic loss in the support negligible. 
It is also considered to be a simple technique. In contrast, 
some disadvantages associated with crosslinking are 
the production of fragile particles, limited diffusion,22 

high operational costs, and the impossibility of support 
regeneration.127 In addition to these, a conformational 
modification of the enzyme may occur due to multiple 
bonds, which leads to partial or total loss of catalytic 
activity.101

Despite the variety of physical and chemical techniques 
applied to enzyme immobilization, there is no specific 
method that can be considered applicable to all enzymes. 
Although each immobilization method has advantages and 
disadvantages, the choice of protocol and the modification of 
the support must take into account the key factors described 
above, involving: the interactions regarding the support, 
the enzyme, and the substrate; its physical parameters (pH, 
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temperature, ionic strength, enzyme concentration); the ease 
of operation and economy of the protocol; activity retention 
and overall operational stability, etc. 

5. Nanomaterial Properties for Lipase Immobilization

In this section, the use of nanomaterials for the 
immobilization of lipases aiming at biofuel production is 
reviewed. Biofuel production can take place in catalyzed 
(homogeneous and heterogeneous) or non-catalyzed 
systems.128 To date, soluble or immobilized lipases, as 
biological catalysts, are the most promising enzymes for 
biofuel production.32 The production of fuels from biomass 
feedstocks catalyzed by lipases is a reasonably novel strategy 
and it is still the subject of ongoing scientific research.129 

Nevertheless, to use lipases in the production of biofuels, 
there is a clear need to optimize their native properties.130 
In this regard, it is possible to improve enzyme activity, 
specificity, selectivity, stability, and reduce their inhibition 
through advances in enzyme engineering techniques, such 
as enzyme immobilization.104 In this technique, the material 
of the immobilization support for may significantly impact 
the activity, stability, and orientation of the enzyme.21 Within 
this context, nanomaterials (nanometric systems (10-9 m)), 
can be said to be very efficient support materials for lipase 
immobilization,131,132 since they can mitigate mass transfer 
resistance phenomena and, therefore, ameliorate diffusional 
problems; besides, nanomaterials present a high surface 
area, thereby enabling effective enzyme loading, and, in 
the case of magnetic nanomaterials, resulting in facilitated 
recovery and reuse of the magnetic nano-biocatalyst.98 

Nanoparticles (NPs), nanotubes (NTs), and nanofibrous 
membranes (NFMs) are the most commonly-used 
nanomaterials for lipase immobilization.26 Remarkably, 
magnetic nanoparticles (MNPs) are used as supports for 
the immobilization of enzymes.133 Lipases have already 
been successfully immobilized onto MNPs aiming at 
the production of biofuels. For instance, lipase B from 
Candida antarctica (CALB) was immobilized onto 
(3-glycidoxypropyl) trimethoxylsilane-functionalized 
MNPs to catalyze the transesterification of waste cooking oil 
with methanol to fatty acid methyl esters (FAMEs). Yields of 
almost 100 % conversion in the presence of molecular sieves 
were observed; also, the process derivate showed excellent 
reusability, retaining 100 % of its initial activity even after 
six reaction cycles.134 Similarly, lipase from Aspergillus 
terreus (AH-F2) was immobilized onto polydopamine-
functionalized MNPs to catalyze the transesterification 
of waste cooking oil with methanol for FAMEs synthesis, 
reaching 92 % conversion at 10 % derivate percentage 
concentration, 6:1 CH

3
OH to oil ratio, temperature of 37 °C, 

0.6 % water content, and 30 h of reaction time.135 
Additionally, metal-organic frameworks (MOFs) are a 

novel nanomaterial for lipase immobilization with interesting 

properties.39 Being crystalline porous nanomaterials, MOFs 
are based on the interconnection of metal ions or metal 
clusters, and organic ligands.136 MOFs can therefore improve 
catalytic efficiency, enhance chemical and thermal stability, 
promote accessibility to active sites, and allow and facilitate 
recyclability and increase enzyme loading.137 Similarly, hybrid 
organic-inorganic nanoflowers have been explored as a new 
immobilization strategy. In this technique, enzymes and metal 
ions act as organic and inorganic components, respectively, to 
form hybrid nanoflowers (HNFs). This immobilization method 
is easy to perform, grants excellent catalytic efficiency to the 
enzyme, and increases its stability; also, the hybrid nanoflower 
biocatalytic system demonstrates high catalytic activity and 
stability in a wide range of experimental conditions compared 
to free and conventionally-immobilized enzymes.8,133

Lipase immobilization onto nanomaterials can 
enhance their catalytic performance through rationing 
and optimization.138 High mechanical strength and surface 
area, active enzyme loading, good mass transfer rates, and 
the minimization of diffusional problems are commonly 
claimed as advantageous properties of nano-supports aimed 
at lipase immobilization;139,140 Besides, there is the possibility 
of synthesizing nanomaterials with well-defined particles 
with adjustable size and the immobilizing these onto 
nanomaterials for reducing protein unfolding.26,131 Although 
the enhancement of enzymatic performance depends on the 
type of lipase, support material, and the immobilization 
conditions and strategies, the immobilization of lipases onto 
nanomaterials is usually reported to increase their activity, 
stability (temperature, pH, solvent, and storage), apart from 
facilitating their recovery and subsequent reuse.138 

Immobilization onto nanomaterials have been shown 
to alter the activity, stability and even modulate native 
lipase functions.141 For example, Monteiro et al.142 showed 
that immobilization by covalent bonding of lipase A from 
Candida antarctica in MNPs functionalized with chitosan 
and activated with glutaraldehyde successfully increased the 
activity and thermal stability of the biocatalyst up to 11 fold. 
There was also an increase in the operational stability of the 
derivative used by up to 7 consecutive cycles, which retained 
50 % of its initial activity even in a very viscous medium, 
such as in the case of the production of a biolubricating 
ester.142 Similarly, Verna et al.143 demonstrated that it is 
possible to increase the thermal and operational stability 
of a lipase from Thermomyces lanuginosus immobilized 
onto multi-walled carbon nanotubes that had been amino-
functionalized and activated with glutaraldehyde.143

Via interfacial activation in the presence of a hydrophobic 
support, lipases can be more strongly adsorbed, shifting the 
equilibrium towards their open conformation and causing an 
increase in enzyme activity through this type of activation.144,145 
In this regard, the hydrophobic interactions at the nanoscale 
are more robust than at the microscale; therefore, it may affect 
the structure of the lipase, enhancing the opening of the lid, 
which consequently improves catalytic activity and stability.26 
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Nevertheless, nanomaterials may present some 
drawbacks in lipase immobilization, such as large-scale 
application limitations, high fabrication cost, enzyme 
entrapment in the pores of nanoporous materials, and 
enzyme separation from the reaction medium, except when 
using magnetic nanomaterials (Figure 3).138 Furthermore, 
the very high surface area tends to maximize the contact of 
the lipase with the surface of the nanomaterials, which may 
cause changes in its conformation and affect its activity.146

Moreover, as they are very small particles with a high 
surface area, nanomaterials are inherently prone to aggregation, 
making paramagnetism and nanobiocatalyst dispersibility 
difficult.147 The aggregation problem could be avoided using 
specific reagents. Particularly, functionalization or activation of 
these nanomaterials with polyethyleneimine, (3-Aminopropyl)-
triethoxysilane, glutaraldehyde, or divinyl sulfone, for example, 
could prevent the phenomenon from taking place.148

Recently, multienzyme co-immobilization onto 
nanomaterials has gained prominence due to its multiple 
application capabilites.149 On this subject, the most used oils 
for biodiesel production are heterogeneous substrates;150 
therefore, the use of different lipases with complementary 
selectivity for the substrates’ free fatty acids may enhance 
the efficiency of the biodiesel production process.151 So 
far, to the best of the authors’ knowledge, there are no 
reports in the literature on the use of nanomaterials for 
co-immobilizing lipases for the production of biofuels. 
However, it is possible to find records on the use of a 
combination of commercial preparations of lipases151 or 
even on the co-immobilization of a combination of lipases in 
non-nanostructured supports152 to this end; in both systems, 
efficiency was increased with the use of combined lipases.

6. Biodiesel Production via Lipase Immobilized 
on Nanomaterials   

As discussed above, immobilized lipases are highly 
relevant catalysts in biofuel production.45,110,153,154 Apart from 
all the aforementioned advantages, they also foster process 
sustainability by reducing or even removing the need for 

additional feedstock-pretreatment and product-purification 
steps.4,8 However, the inherent high costs and specific 
process limitations prevent industrial-scale applications.155 
In this context, many studies were conducted, and among 
these, the application of nanomaterials as carriers for lipases 
has gained significant interest and brings great potential for 
the scale up of biofuel production processes.156,157

As mentioned in the last section, amid possible lipase 
supports, nanomaterials are being reported to increase 
efficiency of biofuel production in several studies due 
to their desired characteristics of versatility (they can be 
produced from different natural sources) and large surface-
to-volume ratio, which provides ample surface area for lipase 
immobilization and increases their stability, simultaneously 
providing better stability and reusability.157–160 Also, the rate 
of diffusion in the active site of the enzymes is enhanced 
due to the minuscule pore sizes found in nanomaterials, 
determined by the square of the diffusion path that accesses 
the site (Eq 1, in which is the diffusion rate of reactant to 
the active sites of the enzyme, and  is the diameter of the 
diffusion path of reactants accessing the active sites of 
enzymes).

                                (1)

Thus, by reducing the diffusion path diameter, one can 
increase the diffusion rates and consequently, accelerate 
the reaction process.157 In biofuel production, lipases are 
mainly used to catalyze transesterification reactions to 
produce biodiesel, a fuel with high potential of reducing 
combustion emissions.161,162 Biodiesel is mostly widely 
produced from renewable biomass resources, such as edible 
vegetable oils, but low-cost feedstock have also been studied 
as alternatives, aiming at reducing competition with food 
production materials and prices.157,160 Inedible and used 
cooking oils, as well as animal fats and greases are examples 
of the other raw materials, but their supply is insufficient 
to meet the global demand for fuel.163 In addition to these, 
microalgae is also a resource with growing interest, since 
they reduce land requirement for production due to being 
grown in wastewater, apart from having high growth rates 

Figure 3. Immobilized lipase onto functionalized-MNPs
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and lipid content.157,161,164 In this context, many studies have 
investigated the effects of using nanomaterials as carriers 
for different lipases. These are listed in Table 2.

Carbon nanotubes are the leading alternatives among 
the carbonaceous supports for lipase immobilization.184 
In this category, multi-walled nanotubes showing high 
efficiency, mechanical strength, and low throughput 
requirement are usually employed.185 Further induction 
of magnetic properties in these carriers enhances their 
potential, facilitating the separation of reactants at the 
end of the process, and reducing energy consumption.185 
Catalyst separation can be a problem in some process since 
they may require more than one simple centrifugation 
and, as with similar situations, incur on additional 
energy costs.157 Therefore, many studies are focused 
on magnetic nanoparticles, as shown in Table 2. Fan et 
al. (2017) prepared multi-walled carbon nanotubes by 
filling them with iron oxide and further linking them with 
polyamidoamine dendrimers on their surface.180 The carrier 
was employed to immobilize a Burkholderia cepacia 
lipase via a covalent method, which provided a specific 
activity 17-fold higher than that of the free enzyme, apart 
from enhanced thermostability and pH resistance. The 
biocatalyst prepared was used to produce biodiesel at a 
conversion rate of 92.8  %, with an excellent recycling 
performance and a catalytic activity over 90  % of its 
original activity after 20 cycles, showing easy separation 
through the use of a magnet.180

The scaleup of a biodiesel production process to an 
industrial level not only requires successful immobilization 
and efficient laboratory synthesis, but also the design and 
operation of appropriate high-volume reactors.168 In this 
context, many reactors configurations have been evaluated, 
and some of them, projected for lipase immobilized in 
nanostructured materials, as discussed below.

Previous studies proved that batch operations are not suited 
for this purpose since they are considered time-consuming, 
labor-intensive, and not well suited for automation.186 On 
the other hand, continuous processes have shown some 
advantages over batch, since production costs and times are 
adjusted according to the necessary work level, the amount 
of biodiesel obtained per labor unit, and the simplicity of 
optimizing biodiesel quality.168 In their continuous production 
system, Wang (et al., 2011), using a Pseudomonas cepacia 
lipase immobilized in Fe

3
O

4
 nanoparticles, obtained better 

results of conversion and stability using a four-packed-
bed reactor than those achieved using a single-packed-bed 
reactor.168 By using the four-packed-bed configuration, the 
process retained its original biodiesel conversion levels. 
Therefore, the reactor has been proved to be an excellent 
option for achieving the design and operation of an enzymatic 
biodiesel production at an industrial level.168 

Another alternative is to use microchannel reactors, 
which parallelize in order to scale up production and are 
easy to operate under continuous mode and constrained 
environments.187 The main advantages in these reactors 

Table 2. Nano-immobilized lipases reported in biodiesel production

Feedstock Lipase source Nanocatalyst Yield ( %) Ref

Soybean oil Thermomyces lanuginosa Fe
3
O

4
90 165

Rapeseed oil Pseudomonas cepacia Poly-acrylonitrile fibers 80 166

Soybean oil Pseudomonas cepacia Poly-acrylonitrile nanofibrous membrane 90 167

Soybean oil Pseudomonas cepacia Fe
3
O

4
88 168

Olive oil Burkholderia sp. Fe
3
O

4
-SiO

2
>90 169

Grease Candida Antarctica and Thermomyces lanuginosus aggregates Fe
3
O

4
>97 170

Olive oil Burkholderia sp. C20 Alkyl grafted core–shell Fe
3
O

4
-SiO

2
95.74 171

Jatropha oil Pseudomonas Fluorescens) Carbon nanotubes 90 172

Palm oil Thermomyces lanuginosus Fe
3
O

4
97.2 173

Soybean oil Pseudomonas cepacia Fe
3
O

4
 coated with polydopamine 90 174

Canola oil
Candida Antarctica Thermomyces lanuginosus 

Rhizomucor miehei
Epoxy-functionalized silica 98 175

Soybean oil Thermomyces lanuginosus Fe
3
O

4
100 176

Canola oil Burkholderia cepacia Fe
3
O

4
@SiO

2
91 177

Sunflower oil Burkholderia Alkyl-celite 85 178

Waste vegetable oil Candida sp. Fe
3
O

4
 sub-microspheres 80 179

Soybean oil Burkholderia cepacia Superparamagnetic Multi-walled carbon nanotubes 93  180

Waste vegetable oil Candida antarctica Fe
3
O

4
@SiO

2
100 135

Rapeseed oil Candida antarctica Fe
3
O

4
89 181

Brown grease Candida rugosa Fe
3
O

4
100 182

Soybean oil Aspergillus niger Fe
3
O

4
@SiO

2
>90 183
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are their large surface to volume ratio and shorter reaction 
times.188 The specific surface area of microchannel reactors 
allows for a more active molecular diffusion, which 
eliminates adverse side reactions, creates hot spots within 
channels, and induces rapid mixing rates.187

Also, active micromixers using magnetic forces have 
gained more attention recently due to their simple design, 
fabrication process, and easy integration to microfluidic 
chips. In a specific study, Mohammadi et al., (2017), 
excited magnetic nanoparticles under a magnetic field to 
increase biodiesel production efficiency.184 Four different 
micromixers, with ring-shaped and pitted-mixing channels, 
with and without a T-junction, were tested under static and 
rotating magnetic fields. By using the pitted type channels 
with a T-junction under a rotating magnetic field, the authors 
were able to obtain a maximum biodiesel yield of 98.1  %.184  

7. Future Trends and Conclusions

Due to the growing demand for energy and the increased 
environmental pollution, the depletion of fossil fuel reserves 
and fluctuations in energy prices have led to an urgent need 
for sustainable and clean energy resources. To this end, some 
initiatives aiming at the production and implementation of 
biofuels have been developed in many countries.160,189,190

However, biofuel production processes still present 
hurdles (such as by-product generation in biodiesel 
production) that need to be overcome before more 
environmentally friendly processes can be achieved. 
Therefore, the use of lipases, especially in their immobilized 
forms, may be a viable alternative for overcoming such 
problems since, besides presenting higher selectivity, 
are also versatile in terms of their applicability, which 
enables the generation of secondary products in small 
or even null concentrations.  They can also be reused in 
consecutive reaction cycles, depending on the process and 
the immobilization technique used.15,160,191–193

Conventional immobilization methodologies using 
different supports194–199 and immobilization routes can 
cause the reduction of specific enzymatic activity during 
their use.105,200 Thus being, employing nanomaterials for 
lipase immobilization is a promising strategy due to their 
several inherent advantages, such as the use of metallic 
nanoparticles as a support in the immobilization phase for 
improving enzymatic activity and stability, by increasing 
surface area and enhancing enzymatic immobilization.201,202 
The main advantage of using immobilized lipases supported 
by nanomaterials is their ease of recovery and reuse, 
resulting in reduced process costs. However, enzymes have 
distinct immobilizing characteristics that can complicate the 
elucidation of the conformational changes taking place as 
they interact with the nanomaterials.24,203,204

Another application of nanomaterials is as a support 
in enzyme co-immobilization protocols. Studies report 

that the immobilization of two or more lipases induces 
better interactions, causing microenvironmental effects 
and cascading kinetic reactions, all of which result in 
an elevation of the general enzymatic activity compared 
to the immobilization of one single lipase.149,200 This 
strategy could be employed to facilitate various processes 
involving the hydrolysis of complex substrates and in 
biofuel production.190 By immobilizing several enzymes in 
nano-supports, biocatalysts can count on various catalytic 
activities, and recovery and reuse is made easier. These 
nano-supports can also be promptly used in batch and flow 
reactors due to the unique properties of the nanomaterials, 
such as magnetism and porous conformation.149,205

Nanomaterials can play an essential role in the 
development and consolidation of sustainable energy 
production processes because of their intrinsic properties. 
However, accelerating the application of nanoparticles 
in bioprocesses requires current and future research to 
solve, or at least ameliorate, the various aforementioned 
technical hurdles by, for instance, investigating the synthesis 
of non-toxic microorganisms, the use of lower-cost and 
environmentally-friendly nanomaterials, and the analysis 
of the behavior and the performance of nanoparticles of 
different shapes and sizes, in different bioprocesses.160,190 

It is essential to mention that the use of enzymes on the 
catalysis of biofuel synthesis currently faces implementation 
difficulties caused by the high costs and low stability of 
these catalysts.206 However, using nanotechnology, some 
of these problems could be reduced via enhancement of 
their catalytic activity, mechanical strength, stability to 
the reaction medium, and easy reusability with magnetic 
carriers.207,208 Such advantages have been confirmed when 
allied with the high efficiencies and the reduced reaction 
times observed. However, since the technology is still in its 
early stages, further investigation is necessary, including 
techno-economic assessments of nano-immobilized 
lipases as biocatalysts for large-scale biodiesel production 
processes.160 Thus, the application of biocatalysts under 
industrial scales must be optimized observing the type 
of enzyme to be used, the process in which they will be 
carried out, the final product of interest, the reaction media 
employed, among other factors.209,210 It also needs to be 
considered that enzymes can become inactive if these 
parameters are not consistent with their physical-chemical 
requirements.185 Therefore, by taking into account all the 
topics discussed in this review, it is essential to combine the 
bio- with the nano-technology to create robust and efficient 
nano-bio-catalytic systems, which has high potential for 
granting more economic feasibility in biofuel production.
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