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Índices de Reatividade da Molécula de Cafeína 

Resumo: Apresentamos neste trabalho uma análise da molécula de cafeína usando 

funções de base difusas e polarizadas, 6-31++G(d,p) e aug-cc-pVDZ, assim como a 

função de base D95V, combinadas com os métodos HF, MP2 e DFT. O objetivo foi 

investigar os efeitos destes métodos e funções de base nos descritores químico-

quânticos, potencial de ionização, afinidade eletrônica, dureza química, potencial 

químico e filicidade global da molécula de cafeína, C8H10N4O2. A análise de 

componentes principais foi realizada para correlacionar os resultados. Também 

realizamos análise de cargas atômicas calculadas com os métodos de Mulliken, Merz-

Kollman e orbitais atômicos naturais. 

Palavras-chave: NBO; reatividade química; MP2; DFT. 

 

Abstract 

In this paper we present an analysis of the caffeine molecule using diffuse and 

polarized basis functions, 6-31++G(d,p) and aug-cc-pVDZ, as well as theD95V basis set, 

combined with the HF, MP2 and DFT methods. The aim was to investigate the effects 

of these methods and basis sets in quantum chemical descriptors, e.g., ionization 

potential, electron affinity, chemical hardness, chemical potential and global philicity 

index of the caffeine molecule, C8H10N4O2. A principal component analysis was 

performed to correlate the results. We have also carried out population analysis of 

atomic charges with Mulliken, Merz-Kollman and Natural Atomic Orbital methods. 

Keywords: NBO; chemical reactivity; MP2; DFT. 
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1. Introduction 

 

Quantum chemistry methods are of 

particular importance to understand stability 

and reactivity of target molecules.
1
 In this 

sense, quantum chemical descriptors take 

advantage of structure and properties 

relationship to estimate and determine the 

reactivity. Global reactivity indexes have 

been widely used to study molecules and 

reactions,
1-5

 and have been effectively 

handled by the conceptual density functional 

theory (DFT).
5,6

 

The caffeine molecule (C8H10N4O2, Figure 

1) is known as a psychoactive stimulant, and 

it is included in the xanthine molecule class. 

This molecule show many important 

biological and pharmacological activities, 

which was the point of interest for several 

theoretical studies, using DFT, Hartree-Fock 

(HF) and second-order perturbation theory 

(MP2) to analyze its vibrational spectrum, 

molecular structure, electronic excitation 

energies, density maps, and NMR.
7-12

  

We investigated the effects of several 

methods and basis set in quantum chemical 

descriptors, i.e., ionization potential, electron 

affinity, chemical hardness, chemical 

potential and global philicity index for the 

caffeine molecule, C8H10N4O2. Principal 

component analysis (PCA) was used to 

correlate the descriptors used in this work. 

The analysis of atomic charges distribution 

was investigated with Mulliken,
13

 Merz-

Kollman
14

 and Natural Bond Orbitals (NBO)
15 

methods. 

 

2. Computational Details 

 

In quantum chemistry, the most 

important in the analysis of results is the 
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theory level, defined in terms of calculation 

procedures from the combination of 

methods and basis set. We intend to analyze 

the influence of methods and basis functions 

in the results obtained for the caffeine 

molecule. The following basis sets were used: 

(I) D95; (II) 6-31++G(d,p); (III) aug-cc-pVDZ. As 

the basis set requirements are different for 

density functional theory (DFT)
16

 and wave 

function theory (WFT), we made calculation 

with both. For density functionals we 

consider the widely used B3LYP, i.e., 

combination of the LYP
17,18

 correlation 

functional with the Becke three-parameter 

(B3)
19

, and LC-wPBE,
20-22

 i.e., long-range-

corrected wPBE
23-25

, where w is a parameter 

defining the range separation, and PBE is an 

acronyms of Perdew-Burke-Ernzerhof.
26

 

B3LYP functional is known to have poor 

quality for long-distance interactions. LC-

wPBE, unlike B3LYP, satisfactorily 

incorporates corrections for long-distance 

interactions, and correctly predicts the 

degree of localization and delocalization of 

electrons.
20-25

 For WFT, we consider HF and 

MP2. The calculations were performed with 

the Gaussian09 program,
27

 while 

Gaussview4.1 was used for the geometry 

visualization.
28

  

HOMO (Highest Occupies Molecular 

Orbital) and LUMO (Lowest Unoccupied 

Molecular Orbital) frontier orbitals are the 

main orbitals that take part in chemical 

reactivity. The related eigenvalues and their 

energy gap reflect the chemical activity of the 

molecule.
29,30

  

An approximation for absolute hardness 

(ɳ) is )(2
1 EAIE  , ɳ = ͳ/ʹሺI-Aሻwhere 

IE is the ionization energy and EA is the 

electron affinity.
31

 According to the 

Koopman's theorem we have I = -EሺHOMOሻ
HOMO

EIE   and 
LUMO

EEA 
,A = -EሺLUMOሻ where EHOMO is the energy of 

the highest occupied molecular orbital, and 

ELUMO is the energy of the lowest unoccupied 

molecular orbital. The higher HOMO energy 

indicates the more reactive molecule in 

reaction with electrophiles. For molecular 

reaction with nucleophiles, lower LUMO 

energy is essential.
6
 The EA and EI descriptors 

are used to yield another global reactivity 

descriptor, the electronic chemical potential 

(µ), defined as )(2
1 EAIE  μ = ͳ/ʹሺI +Aሻ.32-34

 In addition, the global philicity index 

;ωͿ is ĐalĐulated usiŶg the eleĐtroŶiĐ ĐheŵiĐal 
potential and chemical hardness (ɳ) as 


 2

2

 ω = μ2/ʹɳ.  

The concept of molecular hardness is 

related to the stability of the molecular 

system, according to the principle of 

maximum hardness formulated by Parr and 

Pearson.
31

 a direct relationship between the 

concept of molecular hardness and the 

aromaticity has been suggested. The energy 

difference between the HOMO and LUMO 

frontier orbitals (ELUMO-EHOMO), GAP, has been 

used as a quantum chemical descriptor. Small 

GAP values have been associated with 

antiaromaticity.
35

 Moreover, the energy GAP 

also provides valuable information about the 

thermodynamic stability. 
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Figure 1. Optimized structure of caffeine molecule at B3LYP/6-31++G(d,p) level 

 

3. Results 

 

Table 1 shows the results for the full-

optimized geometry of the caffeine molecule. 

These results show that regardless the 

method, D95V basis set provides the most 

negative value for HOMO, followed by 6-

31++G(d,p) and aug-cc-pVDZ. HF and DFT/LC-

wPBE methods provide similar values for the 

HOMO energy, while DFT/B3LYP provides 

more pronounced differences than the other 

methods. The B3LYP method has the lowest 

negative values for LUMO and the lowest 

values for the GAP. These B3LYP results 

suggest higher reactivity in reaction with 

electrophiles. Therefore, B3LYP functional is 

overestimating the caffeine reactivity. 

 

Table 1. HOMO, LUMO and GAP values (a.u.) for the caffeine molecule  

 Method/Basis Sets HOMO LUMO GAP 

1 HF/D95V -0.333 0.087 0.420 

2 HF/6-31++G(d,p) -0.322 0.031 0.353 

3 HF/aug-cc-pVDZ -0.320 0.025 0.345 

4 B3LYP/D95V -0.234 -0.054 0.181 

5 B3LYP/6-31++G(d,p) -0.232 -0.047 0.185 

6 B3LYP/aug-cc-pVDZ -0.232 -0.048 0.183 

7 LC-wPBE/D95V -0.332 0.032 0.364 

8 LC-wPBE/6-31++G(d,p) -0.329 0.029 0.358 

9 LC-wPBE/aug-cc-pVDZ -0.327 0.024 0.352 

10 MP2/D95V -0.330 0.071 0.401 

11 MP2/6-31++G(d,p) -0.320 0.031 0.351 

12 MP2/aug-cc-pVDZ -0.317 0.025 0.342 
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The molecular hardness is associated to 

the resistance to change in the electron 

distribution in the molecule. The calculated 

results for different methods and basis sets 

for the chemical descriptors of the caffeine 

molecule are shown in Table 2. B3LYP values 

are in contrast to the results obtained with 

other methods. The lower values for the 

ionization energy are obtained with the 

B3LYP method. The B3LYP functional is the 

only one that shows positive results for the 

electron affinity. It is well known that LUMO 

orbital values have little correspondence to 

the electron affinity from the Koopman 

theorem,
36

 due to the large self-interaction 

errors.
37

 Furthermore, the HOMO energies 

for anions computed by various functionals 

are positive, indicating that these anions 

would be unstable toward electron 

detachment.
33,38

 

 

Table 2. Molecular descriptors (a.u.) for the caffeine molecule  

 Method/Basis Sets I A ɳ  ω 

1 HF/D95V 0.333 -0.087 0.210 0.123 0.036 

2 HF/6-31++G(d,p) 0.322 -0.031 0.177 0.145 0.060 

3 HF/aug-cc-pVDZ 0.320 -0.025 0.173 0.147 0.063 

4 B3LYP/D95V 0.234 0.054 0.090 0.144 0.115 

5 B3LYP/6-31++G(d,p) 0.232 0.047 0.092 0.140 0.106 

6 B3LYP/aug-cc-pVDZ 0.232 0.048 0.092 0.140 0.107 

7 LC-wPBE/D95V 0.332 -0.032 0.182 0.150 0.062 

8 LC-wPBE/6-31++G(d,p) 0.329 -0.029 0.179 0.150 0.090 

9 LC-wPBE/aug-cc-pVDZ 0.327 -0.024 0.176 0.076 0.016 

10 MP2/D95V 0.330 -0.071 0.201 0.130 0.042 

11 MP2/6-31++G(d,p) 0.320 -0.031 0.176 0.145 0.060 

12 MP2/aug-cc-pVDZ 0.317 -0.025 0.171 0.171 0.085 

 

Figure 2 shows the principal component 

analysis using the following descriptors: 

ionization energy, electron affinity, chemical 

hardness, chemical potential, global philicity 

index and GAP. PC1 is dominated by 

ionization energy, electron affinity, chemical 

hardness, global philicity index and GAP. 

Otherwise, PC2 is dominated by chemical 

potential. DFT methods are clustered 

together, separated from MP2 and HF. D95V 

at MP2 and HF level is also separated from 

the entire set, while for DFT it is only slightly 

separated from the other basis sets. MP2 and 

HF are clustered when using the 6-

31++G(d,p) and aug-cc-pVDZ basis sets. 

Therefore, PCA results suggest that LC-wPBE, 

HF and MP2 using the larger basis sets give 

almost the same trend for the computed 

descriptors. This is in accordance to the 

overestimation of reactivity found from the 

B3LYP GAP values. According to these results 

the LC-wPBE functional shows reliable results 

compared to the perturbation theory with 

gain in computational effort. Moreover, small 

basis set does not guarantee reasonable 

accordance with high level methods and basis 

sets. 
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Figure 2. Principal component scores, using ionization energy, electron affinity, chemical 

hardness, chemical potential, global philicity index, and GAP. See Table 1 for the number 

notation 

 

Analysis of the distribution of charges 

could help understand the reactivity of 

atomic sites in a molecule (local reactivity). 

Although atomic charge is not a quantum 

chemistry observable, atomic charges are a 

useful concept for understanding chemical 

reactivity. It is of fundamental importance for 

the understanding of a range of phenomena, 

e.g., dipole moments and chemical shifts in 

nuclear magnetic resonance (NMR). Because 

of its importance, a large number of 

theoretical and experimental contributions 

have been proposed
39 

for computation of 

atomic charge distribution in molecules. 

Mulliken analysis has the advantage of 

simplicity, because its population overlap is 

divided equally between the two atoms of a 

bond. However, it reveals a number of results 

that come at odds with expectations.
39-40

 In 

general natural atomic charges is fairly 

independent of the method used in their 

computation wave functions used.
40

 Figure 3 

depicts Mulliken, Merz-Kollman and NBO 

population charges. As expected Mulliken 

charges are strongly dependent on the basis 

set, but shows no dependence on the 

method used. Merz-Kollman and NBO atomic 

charges show almost the same trend. The 

well known behavior of natural analysis is 

reproduced. NBO has the fairly independent 

distribution on method and basis set. The 

Merz-Kollman method shows a disagreement 

in relation to the N9 positive results, in this 

case N7 continues to have smallest charge 

value in relation to N9. Therefore, NBO 

results showed to be more independent in 

the charge distribution, and it should be 

widely used to rationalize the chemical 

reactivity. 

 



de Almeida, A. L. et al. 
 

 

Rev. Virtual Quim. |Vol 8|  |No. 2|  |483-492| 489 

 

 

Figure 3. B3LYP, LC-wPBE, HF and MP2 results for the atomic charge populations. Black lines 

are for D95, blue lines are 6-31++G(d,p) and red lines are for aug-cc-pVDZ basis sets. See Figure 

2 for the atom notation used 

 

4. Conclusions 

 

We have carried out HF, DFT (LC-wPBE 

and B3LYP) and MP2 calculations of quantum 

chemical descriptors for the caffeine 

molecule. The D95V, 6-31++G(d,p) and aug-

cc-pVDZ basis sets were used. The calculated 

chemical descriptors are ionization energy, 

electron affinity, chemical hardness, global 

philicity index, chemical potential and GAP. 

The results presented in this paper reveal 

that a careful choice of methods and basis 

sets is of fundamental importance to yield 

accurate quantum chemical descriptors. PCA 

results helps to correlate method and basis 

set with low computational resource to give 

the best estimation of these descriptors. 

Using LC-wPBE and 6-31++G(d,p) or aug-cc-

pVDZ basis sets in combination with NBO 
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charge distribution provides reliable quantum 

chemical descriptors, with results in 

accordance to those obtained with 

perturbation theory. 
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