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Resumo: Neste trabalho, mostramos uma nova Superfície de Energia Potencial (SEP) 
para o complexo He3. A SEP foi obtida em termos das  coordenadas hiperesféricas. O 
potencial empregado tem uma forma analítica bem definida e muito simples. A 
dependência radial é obtida considerando três configurações principais, para as quais 
as energias foram calculadas usando os níveis CCSD(T) e MRCI e seis diferentes 
conjuntos de funções de base (aug-cc-pVXZ (X = D, T, Q, 5, 6) e d-aug-cc-pVQZ) e 
ajustada a uma função de Rydberg Generalizada. 
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Abstract  

In this work, we show a new Potential Energy Surface (PES) for the He3 complex. The 
PES was obtained using hyperspherical coordinates. The potential employed has a well 
defined and very simple analytical form. The radial dependence was obtained by 
considering three ͞leading͟ configurations whose energies, computed at CCSD(T) and 
MRCI levels and six different basis sets (aug-cc-pVXZ (X=D,T,Q,5,6) and d-aug-cc-pVQZ), 
were fitted by a Rydberg function. 
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1. Introduction 

 

Helium has long been considered to be 
one of the most promising candidates for 
seeing Efimov physics since the 4He dimer has 
a large scattering length larger than 200 a.u.. 
The theoretical treatment of triatomic 4He 
systems is simple compared to other atomic 
species because there exists only one dimer 
bound state which has zero orbital angular 
momentum ݈ =  Ͳ. 1-7 Efimov states are highly 
exotic as they result when there is a zero or 
near-zero energy two-body bound state.5-8 

Several studies appeared in the last 
decades employing different approaches and 
computational levels.8-12 Hyperspherical 
methods have been applied extensively to a 
wide range of dynamical problems for 
nuclear, atomic, and molecular systems 

involving three or more particles.8-15  Helium 
clusters are a subject of great interest and 
constitute a growing challenge for the 
theorists.9,10,14,15 

Throughout the experiment conducted by 
Schöllkopf and Toennies with helium dimer, 
was also observed the existence of the He 
trimers.16 The Cencek et. al. found an 
equilateral configuration with �= 2.9634 Å 
(5.6 �) near the minimum of the total 
potential, the nonadditive three-body energy 
calculated at the FCI level amounts to 88.5 
mK (0.0612 cm-1),17 compared to 98.5 mK 
(0.0666 cm-1) at the coupled cluster with 
single, double, and noniterative triple 
excitations CCSD(T) level.18 

Since the first work on HeЈ in 1972,19 

several theoretical papers have been 
published using variety of methods and 
coordinate systems: Monte Carlo,20,21 specific 
functions,22 and hyperspherical coordinates.23 
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Nevertheless, unfortunately, an analytic form 
of the Potential Energy Surface - PES simple 
enough to be used for all the purposes is still 
missing.8-10 

In this paper, to fill the above gap, we 
present a very simple and accurate analytical 
expression of the PES.This function, which is 
express in terms of a hyperspherical 
coordinate system, is capable of treating 
reactive systems,11 vibrations of three body 
systems,12,13 molecules of ABA type,14 as well 
as van der Waals complexes.15 

The paper is organized as follows. In 
Section 2 theoretical and computational 
details are given. In Section 3 results are 
presented and discussed. Conclusions follow 
in Section 4. 

 

2. Theoretical and Computional 

Details 

 

1.1. Analytic Function For The Three-

Body potential   

 

The coordinate system is made by three 
variable, the hyperradius and two 
hyperangles. The hyperangle Θ represents 

the area of the triangle and the hyperangle Φ 
is related with the shape of it, the 
hyperradius, ɏ, is the vector pointed out from 
the center-of-mass (CM) of the system, see 
Figure 1. In this figure, the vectors ��ሺ࢞�, ,�࢟  ሻ(� = 1, 2 and 3) representing the�ࢠ
interatomic distances in space. A full 
description of hyperspherical coordinates 
was presented in 1986 by Aquilanti et. al.

16 
and then, these coordinates have been 
extensively used to described several 
sistems.20,23-26,28-30 

In previous works we used the spherical 
and hyperspherical coordinates for the 
representation of the potential energy 

surface for various van der Waals HЇOЇ⋯X 

and HЇSЇ⋯X, with X = He, Ne, Ar, Kr and Xe 

and for HЇO⋯XЇ, with X=H, N and O 
systems.25-28 Using the same methodology, 
we propose here a new PES for the HeЈ 
complex. More in detail we have obtained 
the PES using the mass unscaled 
hyperspherical coordinates, see Figure 1, ɏ>0, 0 ≤Θ ≤πర, 0≤Φ≤πయ. Note that the ranges of Θ and Φ are lower than their standard 
values. Symmetry restrictions are indeed 
needed to account for the exchange of 
identical particles. 

 

 

Figure 1. Definition of the hyperspherical coordinates (ʌ, Θ, Φ). The vector ��ሺ࢞�, ,�࢟  ,ሻ (� = 1�ࢠ
2 and 3) representing the internuclear distances of Helium atoms, ʌ is the vector with 

representing the distance between the center-of-mass of the molecule system 



 
 Albernaz, A. F.; Barreto, P. R. P. 

  
 

341 Rev. Virtual Quim. |Vol 8|  |No. 2|  |338-355| 

 

Using the symmetrical system conditions, 
the hyperradiusሺߩሻ and hyperangles ሺΘ, Φሻ 

are given, in terms of internuclear distance, 
by: 

 

ߩ     = √ሺభమ+మమ+యమሻଷ                                      (1) 

 cosሺʹΘሻ = ሺ−ݎଵଶ + ଵସݎ͵ଶଶሻ√ͳݎ + ଶଶݎଵଶݎʹʹ + ͳ͵ݎଶସ − ͳʹሺݎଵଶ + ଷଶݎଶଶሻݎ + ଵଶݎଷସሺʹሺݎ͵ + ଶଶሻݎ − ଵଶݎଷଶሻሺݎ + ଶଶݎ + ଷଶሻݎ  

 cosሺΦሻ = ሺݎଵଶ − ଵଶݎଶଶሻ√ሺݎ − ଶଶሻଶݎ + ͵ሺ−ʹሺݎଵଶ + ଶଶሻݎ +  ଷଶሻଶݎ

 

and, conversely, the internuclear distances are given by: 

 

ଵݎ   = ͵ሺ√ߩ +  ሺΦሻሻ               (2)ݏሺʹΘሻܿݏܿ͵

ଶݎ  = ͵)√ߩ + ͳ.ͷܿݏሺʹΘሻ ቀܿݏሺΦሻ +  (ሺΦሻቁ݊�ݏ͵√

ଷݎ  = ͵)√ߩ − ͳ.ͷܿݏሺʹΘሻ ቀܿݏሺΦሻ −  (ሺΦሻቁ݊�ݏ͵√

 

Using the above coordinates, the PES can 
be expanded into a series of angular 

functions multiplied by radial coefficients 
(expansion moments).25-27

 

 

 ܸሺߩ; Θ, Φሻ = ∑ �,,, ሺߩሻܨ, ሺΘ, Φሻ                   (3) 

 

where the m,n(ɏ) coefficients are the 
expansion moments depending on the ߩ coordinate and ܨ, ሺΘ, Φ) are angular 
functions which can be written as the real 
Wigner ܦ-functions, where the ܦ-function is 
given by ܦ, ሺΘ, Φ, �ሻ = ݁−�Θ݀, ሺΦሻ݁−��  ሺ݈ =Ͳ, ͳ, ʹ, … ;  ݉ = ݊ = ±݈ሻ and݀, ሺΘሻ݁−��, 

were ݀, ሺΘሻ is tabulated function.27,28 

The truncation of the set of basis 
functions to a certain value of the index ݈ 
depends on the number of fixed atom-
molecule configurations for which the 
potential energy is known as a function of  
from ab initio calculations. In terms of the 
Wigner ܦ-functions that are complex-valued, 
the  ܨ, ሺΘ, Φ, �ሻ  are found to be simple 
real-valued linear combinations: 

,ܨ  ሺΘ, Φ, �ሻ = √ 8�మమሺమ�+భሻ ቀܦ, ሺΘ, Φ, �ሻ + ,−−ܦ� ሺΘ, Φ, �ሻቁ                (4) 
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,−−ܨ ሺΘ, Φ, �ሻ = �√ 8�మమሺమ�+భሻ ቀ�ܦ, ሺΘ, Φ, �ሻ + ,−−ܦ ሺΘ, Φ, �ሻቁ                (5) 

 
where � = ሺ−ͳሻ−. For ݈ = Ͳ, ,ܨ  ሺΘ, Φ, �ሻ = ,ܦ = ݀, = ͳ and ݈ = ͳ, ݀,ଵ ሺΘሻ  can be obtained from eqs. (4) 
and (5) are listed in Table 1. 

Truncation equation (3) at ݈ = Ͳ and ͳ, 
consequently  ݉ = ݊ = Ͳ and ± ͳ,  and 
considering the  = Ͳ, which is enough to 
represent a three body system, we have: 

 ܸሺߩ, Θ, Φሻ = √ʹ{�,ሺߩሻ݀, ሺͶΦሻ + �,ଵሺߩሻ[݀,ଵ ሺͶΦሻ + ݀,ଵଵ ሺͶΦሻ] +          (6) + �ଵ,ଵሺߩሻܿݏሺΘሻ[݀ଵ,ଵ ሺͶΦሻ + ݀ଵ,ଵଵ ሺͶΦሻ]}. 

 

Table 1. Real Hyperspherical Harmonics - ,ࢊ ሺ�, �, �ሻ for  = � ݉⁄݊  1 0 -1 

1 
ଵ+ୡ୭s ሺΦሻ√ଶ ሺcosሺΘሻcos� − s�nሺΘሻs�n�ሻ −s�nሺΦሻcosሺΘሻ 

ଵ−ୡ୭s ሺΦሻ√ଶ ሺcosሺΘሻs�n� − s�nሺΘሻcos�ሻ 

0 s�nሺΦሻcos� cosሺΦሻ −s�nሺΦሻs�n� 

-1 
ଵ−ୡ୭s ሺΦሻ√ଶ ሺcosሺΘሻcos� + s�nሺΘሻs�n�ሻ −s�nሺΘሻs�nሺΦሻ 

ଵ+ୡ୭s ሺΦሻ√ଶ ሺs�nሺΘሻcos� + cosሺΘሻs�n�ሻ 

 

The eq. (6) shows that three not 
dependent radial functions are needed for ܸ, 
thus we considered three configurations of 
the HeЈ complex: the linear disposition 
corresponding to Θ =  = Ͳ;the equilateral 
triangle (Θ = Ɏ Ͷ⁄  independent of the value 

of ); and a scalene triangle ( = Ɏ ⁄  and              

  = Ɏ ͵⁄ ሻ. The isosceles triangle 

configuration (an isosceles triangle 
corresponding to  = Ɏ ⁄  and   = Ɏ Ͷ⁄ ) 

was choose as a test configuration to verify 
the quality results of the method, see Table 2 
for details. 

 

Table 2. Definition of Leading Configurations, in terms of the Θ, Φ and internuclear angles 

Configuration 

Hyperspherical 
Coordinates Internuclear Angles 

  

Equilateral 45º Ind 60º 

180º Linear 0º 0º 

Scalene 30º 35º 63.71° 37.34º 

Isoceles 30º 60º 71.57º 36.87º 
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The expansion moments are then 
obtained by a linear combination of the 
potential profiles calculated for the leading 

configurations. The moments �,ሺߩሻ are 
related to the potentials of the leading 
configurations by: 

 

  ܸ = ଶ�బ,బ−ଶ�బ,భ√ଶ     (7) 

 

௦ܸ� = ʹ�, + ቆ√ଷଶ − ͳቇ �,ଵ√ʹ  

 

ܸ� = ʹ�, + ʹ�,ଵ + ʹ�ଵ,ଵ√ʹ  

 

where, the indices ݁ܿݏ ,ݍ and ݈�݊ 
corresponding to equilateral, scalene and 
linear geometries, respectively. Solving the 

above system of equations for  �,, �,ଵ and  �ଵ,ଵ, gives: 

   

   �,ሺߩሻ = (√ଷ−√ଶ)���ሺ�ሻ+ଶ√ଶ���ሺ�ሻଶ+√    (8) 

 

�,ଵሺߩሻ = ʹ√ʹ ቀ ܸሺߩሻ − ௦ܸ�ሺߩሻቁʹ + √  

 �ଵ,ଵሺߩሻ = (͵√ʹ − √͵) ܸሺߩሻ − Ͷ√ʹ ௦ܸ�ሺߩሻ + (√ʹ + √͵) ܸ�ሺߩሻʹ + √  

 

Therefore, by substituting eq. (8) into eq. 

(6) the potential energy surface (ܸሺߩ, Θ, Φሻ) 

is express in terms ܸ�, ܸ and ௦ܸ�  

potentials, gives: 

 ܸሺߩ, Θ, Φሻ = √ʹ {((√ଷ−√ଶ)���ሺ�ሻ+ଶ√ଶ���ሺ�ሻଶ+√ ) + ቆଶ√ଶቀ���ሺ�ሻ−���ሺ�ሻቁଶ+√ ቇ [݀,ଵ ሺͶΦሻ +݀,ଵଵ ሺͶΦሻ] + ((ଷ√ଶ−√ଷ)���ሺ�ሻ−ସ√ଶ���ሺ�ሻ+(√ଶ+√ଷ)����ሺ�ሻଶ+√ ) ሺΘሻ[݀ଵ,ଵݏܿ ሺͶΦሻ + ݀ଵ,ଵଵ ሺͶΦሻ]}                   

(9) 

 

The analytical form of the potential 
energy surfaces, for each of the leading 
configurations, are constructed by fitting the 

following fifth degree generalized Rydberg 
function26-28,30 into the ab initio points: 
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 ܷሺߩሻ = ܦ ∑ ቀͳ + ߩ)�� − )�ቁହ�=ଵߩ ߩ)��−]�݁ − [(ߩ +             (10)ܧ

 

where ܦ, ��, ߩ and ܧ  are parameters 

obtained by the fitting procedure. 

In the discussion of the results, the 
energies of an isolated helium atom, the 

dimer, and the trimer are denoted asܧ�, ܧ�మ  and ܧ�య , respectively. Differences in 

energies, which are the corresponding 
binding energies, are denoted 

మ�ܧ∆  = మ�ܧ −          (11)�ܧʹ

య�ܧ∆  = య�ܧ −                                (12)�ܧ͵

 

The term ܧ୬୭୬−aୢୢ, the nonadditive part of the total energy, is denoted 

,ଵݎ୬୭୬−aୢୢሺܧ∆  ,ଶݎ ଷሻݎ = య�ܧ∆ − మ�ܧ∆ .                       (13) 

 

Consequently, the construction of an 
interaction model to be used in a subsequent 
calculation consists in selecting proper 
functions representing the two-body ቀܧ�మሺݎ�−�ሻቁ and three-body ቀ∆ܧ�యሺݎଵ, ,ଶݎ  .ଷሻቁ potentialsݎ

We have not considered the counterpoise 
correction, as suggested by Varandas et. al. 
what concluded that energies calculated with 
a cost-effective extrapolating basis set 
combined with extrapolated levels what 
include high corrections, as CBS, CCSD(T) and 
FCI, as a promising route for accurate 
potentials, even when CP is not used; this 
may help to avoid correcting for BSSE, which 
presents formal difficulties when more than 
two fragments or more than one electronic 
state are involved.31 

 

3. Results and Discussion 

 

All the ab initio calculations were carried 
out by using the Molpro2010 program.32 The 
CCSD(T) and MRCI levels of theory were 
adopted in conjunction with the aug-cc-pVXZ 

(X=D,T,Q,5,6).32-35 Moreover, to assess the 
role of doubly augmented cc-pVQZ Basis, we 
tested the d-aug-cc-pVQZ.36  We will use 
short-hand notation d-aQZ for these base, 
and similarly aXZ (X=D, T, Q, 5 and 6) for the 
singly augmented ones.  

We have computed the energies of 101 
energies to different values of � for the He 
dimer. A non linear least-squares procedure 
was used to obtain the values of the 
adjustable parameters that minimize the 
differences between the analytical energies 
obtained with the fifth degree generalized 
Rydberg function. The ܦ , �� , � ,  ܧ

adjustable parameters and ݏ݉ݎ error to He2 

are listed in Table A1 of the Appendix. 

The Table 3 show one resume of these 
results compared with experimental and/or 
theoretical data. We notice, in particular, that 
the best theoretical dimer interatomic 
potential result is 7.9905 cm-1 to MRCI at the 
distance 2.9631 Å and  8.9019 cm-1 to 
CCSD(T) at the distance 2.9894 Å; both using 
the d-aug-cc-pVQZ basis set. In a 
corresponding calculation, using an exact 
Monte Carlo procedure, Szalewicz and 
Monkhorst obtained the value of 
(7.6439±0.033) cm-1 at the distance 5.60 � 
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(2.9634 Å).37 In the very recent work by 
Røeggen on the fcc and hcp structures of 
helium it was demonstrated that the EXRHF 
model yields a dimer interatomic potential 

equal to 7.5866 cm-1 at the distance 5.60 � 
when a practically complete basis set 
isadopted.38 

 

Table 3. The energy and distance fitting of the He dimer 

Basis Set 
E�మ  [cm-1] Re [Å] 

MRCI CCSD(T) MRCI CCSD(T) 

aDZ 8.7050 9.1897 3.0039 3.0158 

aTZ 6.3466 7.0490 3.0097 3.0389 

aQZ 6.0756 6.8941 2.9877 3.0161 

d-aQZ 7.9905 8.9019 2.9631 2.9894 

a5Z 6.2894 7.1538 2.9857 3.0164 

a6Z 6.2990 7.2006 2.9799 3.0114 

References 

(7.6437±0.033)37 

2.963437-40 
7.586638 

7.610639,a 

7.423040,b 

a Based on ab initio  78-MRCI with IO301 basis set calculations by  Ref. 39. 
b Obtained with CCSD(T)/[6s,5p,4d,3 f,2g,1h] level by  Ref. 40. 

 

Our results to energies and distances are 
good agreement with Szalewicz and 
Monkhorst37 for the d-aQZ basis set to both 
levels. For distance  our results are below 
0.1% to both levels. For energy, discrepancies 
are below 5% to MRCI level and 16.5% to 
CCSD(T) level. In comparison to energy of the 
Bovenkamp and Duijneveldt,39 obtained with 
78-MRCI with IO301 basis set calculations, 
the discrepancy is 5% to MRCI level. While 
compared with results of Koppler and Noga,40 
obtained with CCSD(T)/[6s,5p,4d,3 f,2g,1h] 
level, the discrepancy is 20% to CCSD(T) 
level.  

It is well-known that the MRCI methods 
allow one to reproduce the wave function in 
the valence region (describing static and 
nondynamic correlation effects) more reliably 
in general than the single-reference coupled-
clusters ones in complicated cases. It is not 
less known that the dynamic correlation 
effects (with explicit treatment of outer core 
shells, etc.) are much better described by the 
coupled-clusters approaches. This explained 

the difference between MRCI and CCSD(T) 
results obtained in this work. 

 

3.1. Potential Energy Surface Fit  

 

We have computed the energies of 101 
single potential energy points on the surface 
to different values of  for each 
configuration, and then we have fitted the 
energies vs ߩ by means of a nonlinear least-
square procedure. A nonlinear least-squares 
procedure was used to obtain the values of 
the adjustable parameters that minimize the 
differences between the analytical energies 
obtained with the function (equation 10) and 
the MCRI and CCSD(T) to several basis set 
data. The ܦ , �� , ߩ , ܧ  adjustable 

parameters and ݏ݉ݎ error to the MRCI and 
CCSD(T) potentials are listed in Table A2 of 
the Appendix. 

The smallest difference between the 
distance corresponding to the minimum 
energy in the leading configuration when 
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comparing the CCSD(T) and MRCI results is 
found for the equilateral configuration at 
aug-cc-pVDZ (aDZ) level, amounting ca 
0.0098 Å, and the largest is obtained for the 
linear configuration at aug-cc-pV6Z level, ca 
0.0327Å  becoming 0.0333Å  for the test 
configuration. 

As to the interaction energies, the largest 
difference is encountered for the d-aug-cc-
pVQZ basis set, in correspondence of the 
equilateral triangle configuration, 3.5254 
Đŵ⁻¹ aŶd the sŵallest oŶe is foƌ the sĐaleŶe 

triangle at aug-cc-pVDZ, 0.ϴϯϯϰ Đŵ⁻¹. Foƌ the 
test configuration the difference is 0.8050 
Đŵ⁻¹. 

Since the adopted basis set in this work 
yields a dimer potential which is in ݏ݉ݎ by 
less than 0.001 (see Table A1) to MRCI/d-
aQZ, it should be accurate enough to 
describe the changes in the double pair 
correction terms due to the presence of a 
third subsystem, i.e., its contribution to the 
three-body potential. 

 

Table 4. Hyperradius ሺሻ, internuclear distance ሺ�ࢋሻ, total interaction energy (��ࢋ�)  and 

three-body nonadditive  (��ࢋ�)  contributions term obtained, from the PES fit, to equilateral 

configuration from the Helium trimer to MRCI and CCSD(T) levels and several basis sets 

Basis 
Set 

 [Å] 
� [Å] ሺݎଵ = ଶݎ =  ଷሻݎ

య�ܧ  [cm-1] ܧ�య[cm-1] 

MRCI CCSD(T) MRCI CCSD(T) MRCI CCSD(T) MRCI CCSD(T) 

aDZ 1.7429 1.7331 3.0187 3.0018 24.8815 26.8902 
-

1.2335 
-0.6791 

aTZ 1.7540 1.7325 3.0381 3.0008 18.0840 20.9573 
-

0.9559 
-0.1897 

aQZ 1.7440 1.7231 3.0208 2.9845 18.0180 21.2052 
-

0.2089 
0.5228 

d-aQZ 1.7289 1.7080 2.9945 2.9600 22.5988 26.1242 
-

1.3726 
-0.5814 

a5Z 1.7430 1.7202 3.0190 2.9795 18.1611 21.5255 
-

0.7070 
0.0640 

a6Z 1.7410 1.7176 3.0155 2.9750 18.2744 21.7633 
-

0.6227 
0.1614 

CCSDT(Q)/d-aQZ17 

 
 

23.07 -0.0614 

DMC calculations20  -1.26 

(MRCI+Q)/[5s,4p,3d,2f]22  0.1756 

EXRHF/[19s,7p,6d,5f,4g,2h]37  -0.0555 

CCSD(T)/[7s,5p,3d,2f]42  -0.0694 

DMC calculations43 22.9 -0.0872 

EXRHF/[19s,7p,6d,5f,4g,2h]44 14.94±1.32 0.487±1.5 

 

Table 4 contains the main calculated 
results of this work to MRCI and CCSD(T) 
levels using several basis set for the 
equilibrium equilateral triangle. The 
hyperradius is 1.7289 Å, with an total 
iŶteƌaĐtioŶ eŶeƌgǇ of ϮϮ.ϱϵϴϴ Đŵ⁻¹ aŶd the 

equilibrium internuclear distance obtained is 
2.9945 Å for the     MRCI/d-aQZ level; while 
to CCSD(T)/d-aQZ the hyperradius is 1.7080 
Å, with an total interaction energy of 26.1242 
Đŵ⁻¹ aŶd the eƋuiliďƌiuŵ iŶteƌŶuĐleaƌ 
distance obtained is 2.9600 Å. 
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We present also some results of the most 
recent calculations of the three-body 
potential of the helium trimer. Among these 
calculations, the calculation of Cohen and 
Murrell is the odd one.22 As pointed out by 
Lotrich and Szalewicz,38 there might be two 
reasons for this deviation. First, the adopted 
multireference configuration interaction 
MRCI method, combined with a size 
consistent correctionfor unlinked clusters 
MRCI+Q, is not fully size consistent. Second, 
in a supermolecule approach it is of 
paramount importance to correct for the 
BSSE. Cohen and Murrell did not specify if 

this is done. If they did not, this might be the 
main reason for the discrepancy. 

Our accurate energy MRCI/d-aQZ for the 
trimer ܧ�య = ʹʹ.ͷͻͺͺ cm-1 is in excellent 

agreement with the Lewerenz44 value, ܧ�య = ʹʹ.ͻ cm-1, with DMC calculations and 

Cencek et. al.18 value, ܧ�య = ʹ͵.Ͳͳ cm-1, 

carried out using the CCSDT(Q)/d-aQZ level. 
Our result of the ܧ�య  at MRCI/d-aQZ basis 

set is        -1.3726 cm-1 using MRCI. This result 
is good agreement with the -1.26 cm-1 

obtained used DMC calculations of the Blume 
and Greene.20 

 

 

Figure 2. Illustration of the potential energy surface as a function of the hyperangles  and 
, using the isotropic distance  to d-aug-cc-pVQZ; (a) for MRCI (= 1.7289 Å) and (b) for 
CCSD(T) (= 1.7280 Å). In the (c) and (d) figures we show two-dimensional contours as a 
function of the hyperangles  and .  In this contours the effect of particle permutations on 
the angle  can be clearly seen through the isoenergetic  curves (c) and (d) 
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Figure 2 shows a surface plot of the He 
trimer potential used in the present study. 
For a fixed hyperradius , 1.7289 and 1.7280 
Å (MRCI - Figure 2(a) and CCSD(T) - Figure 
2(b), respectively) to d-aug-cc-pVQZ basis set, 
as a function of the hyperangles  and . We 

show the angular range  [Ͳ, ߨ Ͷ⁄ ] and  

 [Ͳ,  .[ߨ

The two-dimensional contour (Figures 2(c) 
and 2(d)) demonstrated the effect of particle 
permutations on the angle . Due to the 
presence of three indistinguishable particles, ܸሺߩ, Θ, Φሻ is invariant under translation by ߨ⁄͵  in the -direction. Note that the two-

body coalescent points with r12 =0, r23=0, and    
r31=0 correspond to (,) = (ߨ Ͷ⁄ ߨ , ⁄ ), 

ߨ) Ͷ⁄ ,Ͷߨ ⁄ ), and (ߨ Ͷ⁄  .respectively ,(ߨ ,

The symmetry lines of the potential 
surface = ݊ߨ ⁄ , where ݊ = 1 – 6 can easily 

be identified. The contours plot of this figure 
is similar to that of Suno and Esry2 for He3 
and of Blume et. al. foƌ NeЈ.23 In both cases, 

the author show the contours plot at 
distance of 7.93766 Å, while we use the 
distance for the isotropic term. 

The ݏ݉ݎ for the leading and test 
configurations present a minimum for the d-
aug-cc-pVQZ basis set and varies from 
0.000ϲϰϰĐŵ⁻¹ foƌ the eƋuilateƌal tƌiaŶgle. 
This strongly indicates that the most reliable 
results pertain to the       d-aug-cc-pvQZ basis 
set, therefore all the data discussed in the 
following are referred to the above basis set. 

In Figure 3, we illustrate of the potential 
interaction (equation 6) of the He3 system as 
a function of the hyperradius distance. This 
figure compares the ab initio (MRCI and 
CCSD(T)) and the fitted results for the leading 
(Figure 3(a)) and test (Figure 3(b)) 
configurations, where the ab initio points are 
compared with the results obtained by the 
mode (equation 9). Although the isosceles 
configuration not be part of the model, it can 
play very well the ab initio points. 

 

 

Figure 3. Interaction energies as a function of the hyperradius for the equilateral, scalene, 
linear (figure 3(a)) configurations. Circles and squares symbols represent the ab initio points 
calculated to MRCI and CCSD(T) levels using the d-aug-cc-pVQZ base set, and solid and dash 
lines are from Rydberg fitting. The figure 3(b), test configuration (the isoceles triangle with  = 
ʋ/6 and  = ʋ/4), was obtained by the model (eq. 9) 

 

The ݏ݉ݎ between the computed and the 
fitted values ranges in (6 - 43)x10-4 cm-1 to 
MRCI and CCSD(T) for all configurations (see 
Table A2), thus validating the quality of the 
fit. The d-aug-cc-pVQZ basis set presents the 

minimum equilibrium distance and the 
maximum interaction energy.  

Figure 3(b) compares the ab initio points 
with results obtained according the model 
(equation 9), for the test configuration (see 
Table 2 for details). The ݏ݉ݎ  among the 
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MRCI data is 2.71403 cm-1 while according 
the fitting procedure it is 0.000644 cm-1. For 
the results in CCSD(T) the error is 4.51408 
versus 0.000644 cm-1. The errors are large in 
the small hyperradius than in the region of 
bigger hyperradius. 

Figure 4 compares the isotropic ሺ�ሻ and 
anisotropic ሺ�ଵ and �ଵଵሻ terms at MRCI and 
CCSD(T). It has to be noted that the isotropic 
term constitutes very important information 
because it can be obtained by experimental 
determinations and can be used to compare 
different systems. 
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Figure 4. Energy dependence as a function of the hyperradius for the isotropic and anisotropic 
moments of the hyperspherical expansion 

 

The projection of full potential energy 
surface in xy-plane, generated properly 
freezing the angles  or , is showed in 
Figure 5.  These graphs have been obtained 
by using the full potential energy surface 
generated by the hyperspherical harmonics 
expansion, which produce a smooth 
interpolation among the curves 
corresponding to the three leading 
configurations that we have considered in 
this paper.  

These figure show the projection of  
with fixed  (a) = Ͳ or (b)  =  Ͷ. It is/ߨ
clear the period of the  angle of 3/ߨ in 
figure (a), but in figure 2, as  =  Ͷ the /ߨ
angle is undetermined, as showed in table 2, 
(c) shows the projection of  with  = Ͳ and 
(d) with  =  in both part (c) and (d) are ,͵/ߨ
clear the period of 4/ߨ for the  hyperangle. 
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Figure 5. View of the potential energy surface for the interaction of He3 as  and , using 
the isotropic distance,  = 1.7289 Å, and MRCI/d-aug-cc-pVQZ. In (a)  varies in the xy plane, 
with =0, (b)  varies in the xy plane, with  = ʋ/4, (c)  varies in the xy plane, with  = 0, (d) 
 varies in the xy plane, with  = ʋ/ϯ 

 

4. Conclusions 

 

We have used MRCI and CCSD(T) methods 
and several basis sets to compute the three-
body nonadditive contribution to the helium 
trimer interaction energy and represented 
through a hyperspherical harmonic. To 
determine the expansion moments, we chose 
a three significant (leading) configurations, 
thought to be representative also on account 
of the symmetries of the systems. This has 
allowed us to build up an interaction 
potential expansion potentially useful for 
dynamical studies by classical or quantum 
mechanics. 

The hyperspherical expansion appears to 
be a powerful tool: it allows implementation 
of symmetries and of further information 
coming from introduction of additional 
configurations. Interpretation of 
experimental molecular beam scattering 
studies can also be assisted by these 
investigations. 

We have proposed a very simple, 
analytical potential energy surface for the 
He3 system, using the symmetric, mass 
unscaled hyperspherical coordinates. The 
trend obtained by others authors for He 
trimer and similar systems, where in Ne3 and 
Ar3, are well reproduced here.  The MRCI and 
CCSD(T) potentials turned out to be very 
similar, give essentially the same results. The 
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uncertainties of the nonadditive helium 
trimer potential using d-aug-cc-pVQZ basis 
sets and from fitting are about 0.004 cm-1 to 
the trimer minimum. The MRCI/d-aug-cc-
pVQZ level showed is more than adequate to 
study this system.  

In conclusion, three-body potential for the 
ground state of the helium trimer is 
determined by an extensive calculation 
presented so far. Based on our error analysis 
and comparisons with others authors what 
different methods to the Helium trimer 
potential energy surface, we consider also 
these calculations to be the most accurate 

ones. The analytic functions for the three-
body potential yield an effective and simple 
representation of the potential. 
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Appendix 

 

Table A1. Two-body analytic function to helium dimer obtained to MRCI and CCSD(T) levels 
and several basis sets 

 

Basis MRCI 

Set a1 [Å
-1] a2 [Å

-2] a3 [Å
-3] a4 [Å

-4] a5 [Å
-5] 

Eref 

[cm-1] 

De 

[cm-1] 
Req [Å] rms 

aDZ 3.415787 1.259258 0.55028 0.857928 0.687064 0.17462 8.7050 3.0158 0.001147 

aTZ 2.055895 -1.36529 2.247367 -1.51887 0.403654 0.380208 6.3466 3.0389 0.002243 

aQZ 3.558893 1.85153 1.7681 1.321458 0.536468 0.077378 6.0756 3.0161 0.000173 

d-aQZ 2.758663 -0.27441 1.110964 0.215113 0.289419 0.3645 7.9905 2.9894 0.000401 

a5Z 2.569015 -0.94126 1.30008 -0.32576 0.184523 0.230077 6.2894 3.0164 0.000113 

a6Z 2.53998 -1.07302 1.369963 -0.40424 0.152782 0.183669 6.2990 3.0114 1.44E-06 

 
CCSD(T) 

aDZ 3.414403 1.274788 0.550779 0.838421 0.686003 0.179354 9.1897 3.0039 0.00113 

aTZ 2.063261 -1.47647 2.303935 -1.4938 0.379605 0.366437 7.0490 3.0097 0.002256 

aQZ 3.546051 1.783883 1.669134 1.250678 0.531804 0.082066 6.8941 2.9877 0.000171 

d-aQZ 2.759573 -0.30169 1.076766 0.18071 0.281098 0.373283 8.9019 2.9631 0.00041 

a5Z 2.570582 -0.96851 1.297542 -0.32951 0.175589 0.239808 7.1538 2.9857 0.00011 

a6Z 2.535884 -1.11604 1.375317 -0.40688 0.145733 0.193097 7.2006 2.9799 1.69E-06 
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Table A2. Three-body analytic function (eq. (11)) for the leading configurations obtained to 
MRCI and CCSD(T) levels and several basis sets 
 

Basis Set Configurations 
MRCI 

a1 [Å-1] a2 [Å
-2] a3 [Å

-3] a4 [Å
-4] a5 [Å

-5] Eref [cm-1] De [cm-1] eq [Å] rms 

aDZ Equilateral 5.670953 2.390386 1.960427 6.50082 8.629325 -0.0533 24.881 1.7429 0.010615 

 
Scalene 3.933895 0.910421 0.583547 0.918886 1.348534 0.0197 10.297 2.3898 0.003098 

 
Linear 4.141615 1.747257 0.844911 1.670518 1.716155 0.0100 17.601 2.4615 0.004839 

aTZ Equilateral 3.654171 -4.26685 11.17461 -10.9549 4.047226 0.0772 18.084 1.7540 0.020626 

 
Scalene 2.578739 -2.41127 4.685046 -3.53893 1.118343 0.3196 7.993 2.3889 0.001959 

 
Linear 2.506939 -1.9741 4.174734 -3.30061 1.110273 0.7327 12.969 2.4814 0.007901 

aQZ Equilateral 4.931535 -0.83734 5.954968 2.079468 1.792079 -0.0537 18.018 1.7440 0.003696 

 
Scalene 3.974911 0.991242 2.321968 1.490864 0.835723 -0.0156 7.478 2.3849 0.000348 

 
Linear 4.073514 1.65558 2.568822 2.02979 1.045606 -0.0326 12.039 2.4668 0.001151 

d-aQZ Equilateral 5.131096 0.925939 6.06384 4.931025 4.069759 -0.0593 22.599 1.7289 0.004334 

 
Scalene 3.610234 -0.06035 1.684517 0.598157 0.930568 0.0476 10.032 2.3552 0.001039 

 
Linear 3.654758 0.404937 2.092028 1.049145 0.843774 0.0804 15.494 2.4392 0.002013 

a5Z Equilateral 4.228244 -3.80604 7.398114 -3.885 2.120015 -0.0168 18.161 1.7430 0.000746 

 
Scalene 3.333332 -1.12986 2.295152 -0.5349 0.478334 0.0218 7.527 2.3851 6.84E-05 

 
Linear 3.226953 -1.19952 2.297333 -0.59601 0.424293 0.0565 12.175 2.4666 0.00041 

a6Z Equilateral 4.118929 -4.30912 8.000636 -4.9618 2.310861 -0.0101 18.274 1.7410 6.64E-05 

 
Scalene 3.243004 -1.45174 2.505748 -0.82469 0.452678 0.0225 7.556 2.3820 3.73E-06 

 
Linear 3.146586 -1.50271 2.460465 -0.84125 0.414186 0.0577 12.261 2.4632 5.90E-06 

  
CCSD(T) 

aDZ Equilateral 5.655238 2.395923 1.958542 6.282626 8.562892 -0.0595 26.890 1.7331 0.010583 

 
Scalene 3.935259 0.950148 0.622091 0.896162 1.34246 0.0179 11.131 2.3754 0.002969 

 
Linear 4.136003 1.76724 0.862102 1.633511 1.717742 0.0054 18.920 2.4484 0.004696 

aTZ Equilateral 3.658618 -4.5929 11.3192 -10.6032 3.807974 0.0759 20.957 1.7325 0.020697 

 
Scalene 2.58046 -2.60883 4.773108 -3.45783 1.050971 0.3247 9.223 2.3597 0.001989 

 
Linear 2.510863 -2.1917 4.302849 -3.24909 1.045385 0.7344 14.892 2.4510 0.008017 

aQZ Equilateral 4.606487 -2.36907 6.274802 -0.30339 1.318736 -0.0477 21.205 1.7231 0.003824 

 
Scalene 3.937203 0.823851 2.176859 1.301218 0.794199 -0.0167 8.811 2.3554 0.000356 

 
Linear 4.028938 1.451091 2.354986 1.781898 0.983421 -0.0345 14.171 2.4374 0.001216 

d-aQZ Equilateral 5.098626 0.645625 5.671055 4.309398 3.875399 -0.0646 26.124 1.7089 0.004358 

 
Scalene 3.608028 -0.0824 1.63236 0.495209 0.905512 0.0479 11.530 2.3287 0.001022 

 
Linear 3.64486 0.320311 1.988101 0.921185 0.816067 0.0795 17.888 2.4117 0.001956 

a5Z Equilateral 4.207787 -3.97902 7.430486 -3.94956 2.053953 -0.0174 21.526 1.7202 0.000746 

 
Scalene 3.322466 -1.2089 2.300483 -0.57125 0.463306 0.0238 8.929 2.3531 6.61E-05 

 
Linear 3.214423 -1.28558 2.305526 -0.62997 0.411718 0.0616 14.420 2.4346 0.000408 

a6Z Equilateral 4.101965 -4.48049 8.038834 -4.93787 2.210977 -0.0110 21.763 1.7176 7.32E-05 

 
Scalene 3.229211 -1.54908 2.521989 -0.85079 0.439513 0.0250 9.012 2.3492 4.52E-06 

 
linear 3.133871 -1.59372 2.476261 -0.85986 0.399194 0.06223 14.593 2.4305 6.80E-06 
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