

Revista Virtual de Química

ISSN 1984-6835

Artigo

Casca Preciosa (*Aniba canelilla*) como Inibidor de Corrosão do Aço-Carbono

de Barros, I. B.; Moscoso, H. Z. L.; Custodio, D. L.; Veiga Junior, V. F.; Bastos, I. N.*

Rev. Virtual Quim., **2015**, *7* (5), 1743-1755. Data de publicação na Web: 15 de julho de 2015

http://www.uff.br/rvq

Aniba canelilla as Corrosion Inhibitor of Carbon Steel

Abstract: Natural products stand out as a corrosion inhibitor source. The species *Aniba canelilla* (HBK) Mez, popularly known as "*casca preciosa*", belongs to the Lauraceae family. This botanical family is known by its alkaloid presence. Amazonian *A. canelilla* ethanolic extract was analysed by mass spectrometry and evaluated as a corrosion inhibitor of carbon steel (UNS G10200) in $H_2SO_4 1.0 \text{ mol.L}^{-1}$. The mass spectrometry identified the presence of alkaloid reticuline and *N*-methyl-clocaurine in the extract. Polarization curve and electrochemical impedance spectroscopy were used to evaluate the inhibition effect. It was observed a maximum reduction of 86.9 % in the corrosion current density and an increase of 76.0 % in charge transfer resistance indicating an inhibition of corrosion for concentration of 300 mg.L⁻¹. The weight loss showed an inhibition of 83.9 % in the corrosion rate.

Keywords: Lauraceae; alkaloids; mass spectrometry; polarization curve; electrochemical impedance.

Resumo

Os produtos naturais têm se destacado como fontes promissoras de inibidores de corrosão. A espécie *Aniba canelilla* (HBK) Mez, popularmente conhecida como "casca preciosa", pertencente à família Lauraceae, que é conhecida pela presença de alcaloides. Extrato etanólico de *A. canelilla* coletada na Floresta Amazônica foi analisado por espectrometria de massas e avaliado quanto à atividade de inibição de corrosão de aço-carbono (UNS G10200) em H₂SO₄ 1,0 mol.L⁻¹. A espectrometria de massas permitiu identificar a presença dos alcaloides reticulina e *N*-metilclocaurina no extrato. Curvas de polarização e impedância eletroquímica foram empregadas para avaliar o efeito do inibidor. Foi observada uma redução máxima na densidade de corrente de corrosão de 86,9 % e um aumento na resistência de transferência de carga de 76,0 % indicando uma inibição de corrosão para a concentração de 300 mg.L⁻¹. Os ensaios de perda de massa mostraram uma inibição de 83,9 % na taxa de corrosão.

Palavras-chave: Lauraceae; alcaloides; espectrometria de massas; curva de polarização; impedância eletroquímica.

inbastos@iprj.uerj.br
DOI: 10.5935/1984-6835.20150099

Rev. Virtual Quim. |Vol 7| |No. 5| |1743-1755|

^{*} Universidade do Estado do Rio de Janeiro, Instituto Politécnico do Rio de Janeiro, Rua Bonfim, 25, CEP 28625-570, Nova Friburgo-RJ, Brasil.

Volume 7, Número 5

Setembro-Outubro 2015

Revista Virtual de Química ISSN 1984-6835

Casca Preciosa (*Aniba canelilla*) como Inibidor de Corrosão do Aço-Carbono

Iuri B. de Barros,^a Hugo Z. L. Moscoso,^a Dayana L. Custódio,^a Valdir Florêncio Veiga Junior,^b Ivan Napoleão Bastos^a

^a Universidade do Estado do Rio de Janeiro, Instituto Politécnico do Rio de Janeiro, Rua Bonfim, 25, CEP 28.625-570, Nova Friburgo-RJ, Brasil.

^b Universidade Federal do Amazonas, Instituto de Ciências Exatas, Departamento de Química. Av. Rodrigo Octávio, 6.200, Departamento de Química, ICE, Setor Norte do Campus Universitário, Japiim, CEP 69079000, Manaus-AM, Brasil.

* inbastos@iprj.uerj.br

Recebido em 13 de maio de 2015. Aceito para publicação em 14 de julho de 2015

1. Introdução

2. Parte experimental

2.1. Extrato vegetal

2.2. Identificação dos alcaloides presentes no extrato etanólico do caule de A. canelilla

- 2.3. Avaliação eletroquímica
- **2.4.** Ensaios de perda de massa

3. Resultados e discussão

- **3.1.** Ensaios eletroquímicos
- **3.1.** Ensaios de perda de massa
- 3.3. Espectrometria de massas do extrato etanólico do caule de A. canelilla

4. Conclusão

1. Introdução

O uso de extratos vegetais como inibidores de corrosão ambientalmente amigáveis tem sido avaliado para diversos metais e ligas metálicas, expostos a diferentes meios corrosivos de interesse industrial. A eficiência de inibição está associada à presença de heteroátomos como oxigênio, nitrogênio, enxofre e fósforo e também a estrutura eletrônica da molécula.¹⁻

A família botânica Lauraceae é conhecida por apresentar entre seus metabólitos diversos alcaloides, classe de produtos naturais que tem como característica a presença de pelo menos um átomo de nitrogênio em anel heterocíclico.⁵

O efeito inibidor de corrosão por

alcaloides já é bem documentado para alguns alcaloides isolados, entre os quais a cafeína.^{6,7} Especificamente na família Lauraceae, extratos de *Aniba rosaeodora* foram avaliados quanto à sua capacidade de inibir a corrosão de aço-carbono em ácido clorídrico 1,0 mol·L⁻¹, permitindo observar uma elevada capacidade protetora.⁸

Aniba canelilla (HBK) Mez, pertencente à família Lauraceae, apresenta distribuição em matas de terra firme, sendo que no Brasil, ocorre nos estados do Pará e do Amazonas. Popularmente conhecida como "casca preciosa", a espécie A. canelilla produz um óleo essencial no caule, rico em 1-nitro-2feniletano.⁹⁻¹¹ Atividades antioxidantes e citotóxicas Artemia salina foram em observadas para este óleo essencial.¹² Isoladamente, o 1-nitro-2-feniletano mostrou atividade analgésica, provavelmente de origem periférica.¹³ Além do óleo essencial, são relatados para esta espécie diversos alcaloides isoquinolínicos, tais como a reticulina, coclaurina e noranicanina.^{14,15}

Soluções ácidas são amplamente usadas em processos industriais, dentre os quais podemos destacar a decapagem; e também nas rotinas de limpeza de diversos equipamentos. Nestes casos a principal medida para o combate a corrosão é o uso de inibidores de corrosão. Os produtos naturais têm ganhado destaque nas buscas de novos inibidores de corrosão nestas aplicações industriais.^{3,16}

O presente trabalho visa avaliar o extrato etanólico do caule de *A. canelila* quanto à eficiência na inibição de corrosão em açocarbono empregando técnicas eletroquímicas e ensaios de perda de massa em meio ácido sulfúrico 1,0 mol·L⁻¹.

2. Parte experimental

2.1. Extrato vegetal

O extrato foi preparado a partir do caule da *Aniba canelilla*, seco à sombra e moído. A

extração foi realizada em extrator tipo Soxhlet, por 6 horas, usando etanol como solvente. A solução foi posteriormente concentrado em evaporador rotatório a pressão reduzida e armazenado em freezer (aproximadamente -4 °C) até o momento de realização dos ensaios de corrosão.

2.2. Identificação dos alcaloides presentes no extrato etanólico do caule de *A. canelilla*

O extrato etanólico foi particionado para a obtenção de fração alcaloídica sua empregando a metodologia proposta por Mitchell et al.¹⁷ para a obtenção de xantinas. Os espectros de massa dessa fração foram adquiridos utilizando-se um espectrômetro de massas LQC Fleet (ThermoScientific) equipado com um analisador iontrap e com uma fonte de electrospray operando no modo positivo. Foram injetados 5 µL de amostra no loop, utilizando seringa de 50 µL Hamilton, em fluxo de 20 µL·min⁻¹ de metanol grau HPLC mantido através de bomba de fluxo controlado. Os parâmetros utilizados durante a análise foram sheath gas flow rate (20 arb), auxiliar gas flow rate (5 arb), sweep gas flow rate (0 arb), spray voltage (5,00 kV), capillary temperature (300,0 °C), capillary voltage (26 V) e tube lens (110 V). Os íons foram monitorados numa faixa de 100 a 1000 m/z para a obtenção dos perfis totais de íons.

2.3. Avaliação Eletroquímica

Na avaliação da inibição da corrosão do extrato etanólico de *A. canelilla* foram empregados corpos de prova de aço-carbono UNS G10200 cilíndricos com área exposta de 0,32 cm². Os corpos-de-prova utilizados foram previamente lixados com lixas d'água de granulometria 600, lavadas com água deionizada e etanol. Em seguida eles foram secos com fluxo de ar aquecido.

Os ensaios foram realizados em célula

eletroquímica com capacidade de 200 mL contendo a solução de teste, H₂SO₄ 1,0 mol L⁻¹ na ausência e na presença de extrato

etanólico do caule de *Aniba canelilla* nas concentrações de 50, 100, 200 e 300 mg·L⁻¹. Foi empregado um banho termostatizado, Tecnal TE-2005, para manter a temperatura a 25,0 ± 0,2 °C.

Um eletrodo de calomelano saturado (ECS) foi empregado como eletrodo de referência, e o contra-eletrodo foi um filamento de platina. Com um potenciostato Gamry ESA 410, inicialmente foi monitorado potencial de circuito aberto por 3.600 s. Posteriormente, foi realizada a varredura linear de potencial com registro da corrente, com varredura ± 300 mV em torno do potencial de corrosão aplicando uma taxa de varredura de 1,0 mV·s⁻¹. Todos os ensaios foram realizados em triplicata. A técnica de curva de polarização permite estimar a densidade de corrente de corrosão, e com ela pode-se calcular a eficiência de inibição a partir da Equação 1:

$$\eta\% = \frac{j_{corr,0} - j_{corr}}{j_{corr,0}} x100 \qquad \text{Eq. 1}$$

onde $j_{corr,0}$ é a densidade de corrente de corrosão na ausência do inibidor, e j_{corr} é a densidade de corrente de corrosão na presença do inibidor.

A espectroscopia de impedância eletroquímica (EIE) foi medida no potencial de corrosão, com varredura em frequência de 20 kHz a 20 mHz, com uma amostragem de 10 pontos por década, e amplitude do sinal de excitação de 8 mVrms. A técnica de EIE possibilita o cálculo da eficiência de inibição em função da resistência de transferência de carga de um circuito elétrico equivalente ajustado para os pontos experimentais empregando a seguinte equação:

$$\eta\% = rac{R_{ct} - R_{ct,0}}{R_{ct}} x100$$
 Eq. 2

onde $R_{ct,0}$ é a resistência de transferência de carga na ausência do inibidor, e R_{ct} é a resistência de transferência de carga na presença do inibidor.

2.4. Ensaios de Perda de massa

Amostras de aco-carbono (25 mm x 20 mm x 1 mm) da mesma liga usada nos ensaios eletroquímicos foram lixadas com lixas d'água de granulometria 100, lavadas com água deionizada e etanol e secas com auxílio de ar quente. Amostras em triplicatas foram imersas em solução de H_2SO_4 (1,0 mol·L⁻¹) por 24 h a 25 °C na ausência e presença do extrato etanólico de A. canelilla em diferentes concentrações (50, 100, 200 e $300 \text{ mg} \cdot \text{L}^{-1}$). A perda de massa foi determinada gravimetricamente empregando uma balança analítica com precisão de 0,1 mg. A eficiência de inibição $(\eta\%)$ foi determinada pela Equação 3:

$$\eta\% = \frac{w_{corr,0} - w_{corr}}{w_{corr,0}} x100 \qquad \text{Eq. 3}$$

onde $w_{corr,0}$ e w_{corr} representam a perda de massa na ausência e presença do inibidor, respectivamente.

A concentração de 100 mg·L⁻¹ foi escolhida para os ensaios de perda de massa seguintes em função de apresentar uma eficiência de inibição significativa e não exigir uma grande quantidade de amostra.

Os efeitos do tempo e da temperatura na taxa de corrosão das amostras de açocarbono em solução 1,0 mol·L⁻¹ de H_2SO_4 foram avaliados. Estes experimentos foram realizados na ausência e na presença de 100 mg·L⁻¹ de extrato etanólico de *A. canelilla* por 24, 48 e 72 h a 25 °C; e também a 25, 35, 45 e 55 °C com tempo de exposição de 2 horas.

3. Resultados e discussão

3.1. Ensaios Eletroquímicos

A Figura 2 apresenta o monitoramento do potencial de circuito aberto por 3.600 s. Este tempo foi suficiente para que o potencial de circuito aberto estabilize no potencial de corrosão.

A Figura 2 mostra as curvas de polarização mais representativas obtidas para o açocarbono em ácido sulfúrico, 1,0 mol·L⁻¹, com as diferentes concentrações de extrato etanólico do caule de *A. canelilla* a 25 °C. O potencial de circuito aberto foi medido após 3.600 s de exposição ao meio e os parâmetros eletroquímicos como potencial de corrosão (E_{corr}), densidade de corrente de corrosão j_{corr} e as constantes anódica (β_a) e catódica (β_c) obtidas pela extrapolação da equação de Tafel encontram-se na Tabela 1.

Figura 1. Monitoramento do circuito aberto por 3.600 s para aço-carbono em ácido sulfúrico 1,0 mol·L⁻¹ na ausência e presença de extrato etanólico de *Aniba canelilla* nas concentrações 50, 100, 200 e 300 mg·L⁻¹ a 25 °C

Figura 2. Curvas de polarização representativas obtidas para aço-carbono em ácido sulfúrico 1,0 mol·L⁻¹ na ausência e presença de extrato etanólico de *Aniba canelilla* nas concentrações 50, 100, 200 e 300 mg·L⁻¹ a 25 °C

Inibidor	E _{corr}	$j_{\it corr}$	β_{a}	β_c	n(0/2)
(mg·L⁻¹)	(mV/ECS)	(µA·cm⁻²)	(mV/dec)	(mV/dec)	η(70)
0	-539,0 ± 2,8	680,7 ± 26,4	140,3 ± 5,9	92,3 ± 0,4	_
50	-508,0 ± 7,2	427,8 ± 52,5	67,7 ± 14,3	117,8 ± 24,9	37,2 ± 7,7
100	-510,0 ± 1,0	257,0 ± 33,9	47,9 ± 0,9	132,6 ± 22,6	62,2 ± 5,0
200	-508,7 ± 2,1	160,7 ± 12,7	39,8 ± 1,1	131,1 ±10,4	76,4 ± 1,9
300	-511,0 ± 19,1	89,4 ± 1,8	30,9 ± 1,3	104,6 ± 11,1	86,9 ± 0,3

Tabela 1. Parâmetros eletroquímicos obtidos pela extrapolação da equação de Tafel para aço-carbono em ácido sulfúrico 1,0 mol L⁻¹ na ausência e presença de extrato etanólico de *Aniba canelilla* nas concentrações 50, 100, 200 e 300 mg·L⁻¹

Observando os dados expostos na Tabela 1 nota-se uma diminuição na densidade de corrente de corrosão com o aumento da concentração do extrato de *A. canelilla*, indicando a presença de atividade inibidora neste extrato.

Geralmente desvios no E_{corr} maiores que 85 mV em relação ao E_{corr} na ausência do inibidor permitem classificar o inibidor como anódico ou catódico.¹⁸ É possível observar um desvio no potencial de corrosão no sentido mais nobre com o aumento da concentração do inibidor. Este desvio indica que as moléculas são adsorvidas preferencialmente nas regiões anódicas. No entanto o desvio máximo observado é de 21 mV, o que indica um mecanismo de inibição misto, resultado semelhante ao relatado para outros inibidores naturais.^{19,20} O maior desvio observado na constante de Tafel anódica (β_a) que na catódica (β_c) também indica uma maior influência nas reações anódicas.

Com o uso da Equação 1 foi possível determinar a eficiência de inibição de corrosão de 86,9 ± 0,3 % para a concentração

de 300 mg·L⁻¹ de extrato de *A. canelilla* em meio de ácido sulfúrico 1,0 mol·L⁻¹. A Figura 3 apresenta os diagramas de Nyquist para o aço-carbono em ácido sulfúrico 1,0 mol·L⁻¹ na presença e na ausência do extrato etanólico do caule de *A. canelilla* a 25 °C. Nota-se que o poder de inibição só ocorre de modo relevante acima de 50 mg·L⁻¹, conforme se observa na Figura 3, embora este efeito já seja notado de modo fraco na concentração de 50 mg·L⁻¹.

Os espectros de impedância eletroquímicos obtidos foram analisados empregando circuito equivalente (Figura 4), no qual R_s representa a resistência ôhmica da solução e R_{ct} representa a resistência à transferência de carga cujo valor é inversamente proporcional à taxa de corrosão.²¹ O elemento de fase constante (CPE) é empregado no circuito em vez de um capacitor ideal associado à dupla camada ideal para possibilitar um ajuste mais preciso dos dados experimentais,²² haja vista que os dois parâmetros do circuito CPE, Q e α , podem ser ajustados para modelar os espectros com maior liberdade.

Figura 3. Diagramas de Nyquist mais representativos obtidos no potencial de circuito aberto para aço-carbono em 1,0 mol·L⁻¹ na presença e na ausência do extrato de *Aniba canelilla* nas concentrações 50, 100, 200 e 300 mg.L⁻¹

Figura 4. Circuito equivalente empregado para ajustar os dados de espectroscopia de impedância eletroquímica de aço-carbono em ácido sulfúrico na presença e ausência do extrato etanólico de caule de *Aniba canelilla*

A capacitância da dupla camada, para um circuito contendo um CPE, é calculada pela seguinte equação:

$$C_{dl} = Q(2\pi f_{max})^{\alpha - 1} \qquad \text{Eq. 4}$$

onde f_{max} é a frequência em que a parte imaginária da impedância é máxima. Os parâmetros obtidos pela análise dos espectros de impedância eletroquímica, incluindo R_{ct} , C_{dl} , Q e α , estão listados na Tabela 2.

Foi observada uma forte dependência da concentração do extrato de *A. canelilla* com a resistência de transferência de carga. Desta forma, observou-se uma eficiência de inibição, determinada empregando a Equação 2, de $76,0 \pm 0,6$ % para a concentração de 300 mg·L⁻¹ do extrato avaliado.

Concentração (mg·L ⁻¹)	R <i>ct</i> (Ohm∙cm²)	α	QQ (μS∙cm ⁻² s ^α)	f _{max} (Hz)	C _{dl} (µF∙cm ⁻²)	17 (%)
0	36,2 ± 0,6	0,891 ± 0,004	543,9 ± 12,6	12,40	338,4 ± 14,0	—
50	36,9 ± 0,9	0,893 ± 0,004	409,5 ± 18,2	15,81	253,5 ± 2,3	2,04 ± 2,27
100	70,9 ± 13,6	0,845 ± 0,015	275,7 ± 14,2	12,40	140,4 ± 6,1	47,99 ± 10,01
200	110,2 ± 1,0	0,861 ± 0,004	144,3 ± 3,5	15,81	76,1 ± 3,1	67,19 ± 0,31
300	150,6 ± 4,0	0,838 ± 0,027	141,7 ± 39,1	15,81	66,4 ± 1,1	76,0 ± 0,6

Tabela 2. Parâmetros eletroquímicos obtidos pela EIE para aço-carbono em ácido sulfúrico

1 mol·L⁻¹ na ausência e presença de extrato etanólico do caule de *Aniba canelilla* nas concentrações de 50, 100, 200 e 300 mg·L⁻¹

3.2. Ensaios de Perda de Massa

Os resultados dos ensaios de perda de massa de aço-carbono em 1,0 mol·L⁻¹ H_2SO_4 na presença e ausência de extrato de *A. canelilla* em diferentes concentrações (50,

100, 200 e 300 mg·L⁻¹) para 24 horas de exposição a 25 °C estão sumarizados na Tabela 3. Como observada nos ensaios eletroquímicos, a eficiência de proteção está relacionada com a concentração, variando de 76,8 a 83,8 %.

Tabela 3. Perda de massa em 1,0 mol·L⁻¹ H₂SO₄ com adição de extrato de *Aniba canelilla* nas diferentes concentrações: 0, 50, 100, 200 e 300 mg·L⁻¹

Inibidor (mg·L ⁻¹)	w _{corr} (mg·cm ⁻² ·h ⁻¹)	η(%)
0	1,389 ± 0,025	_
50	0,322 ± 0,006	76,8 ± 0,2
100	0,273 ± 0,004	80,4 ± 0,0
200	0,247 ± 0,007	82,2 ± 0,1
300	0,225 ± 0,002	83,8 ± 0,1

A perda de massa do aço-carbono exposto em solução H_2SO_4 1,0 mol·L⁻¹, na ausência e na presença de 100 mg·L⁻¹ por 24, 48 e 72 horas constam na Tabela 4. Este teste demonstrou que o poder de inibição do extrato de *A. canelilla* permanece estável, com inibição da corrosão variando de 80,4 a 78,4 % ao longo das 72 horas de ensaio.

A corrosão do aço-carbono em H_2SO_4 1,0 mol·L⁻¹ na ausência e na presença de 100 mg·L⁻¹ de extrato etanólico de *A. canelilla* foi avaliada com um tempo de exposição de 2 horas em diferentes temperaturas (25, 35, 45 e 55 °C). A taxa de corrosão observada apresentou baixa variação até 45 °C (Tabela 5). A redução observada na eficiência de inibição a 55 °C pode ser atribuída, parcialmente, à presença de um processo de adsorção física, no qual o aumento da temperatura reduz a eficiência de inibição. Outro fator que pode contribuir para este efeito é a possível degradação térmica de alguns dos componentes do extrato.

Tabela 4. Perda de massa em 1,0 mol·L⁻¹ H₂SO₄ na ausência e presença de 100 mg·L⁻¹ de *Aniba canelilla* com exposição de 24, 48 e 72 horas à temperatura ambiente (25 °C)

Tanana da incaraño (h)	<i>w_{corr}</i> (m	m(0/)	
rempo de imersão (n)	0 mg·L⁻¹	100 mg·L ⁻¹	$\eta(\%)$
24	1,389 ± 0,025	0,273 ± 0,004	80,4 ± 0,2
48	1,154 ± 0,002	0,249 ± 0,012	78,4 ± 0,1
72	1,292 ± 0,014	0,278 ± 0,014	78,5 ± 0,2

Tabela 5. Perda de massa em 1,0 mol.L⁻¹ H₂SO₄ na ausência e presença de 100 mg.L⁻¹ de extrato etanólico de *Aniba canelilla* com exposição de 2 horas nas temperaturas de 25, 35, 45 e 55 °C

Tomporatura (°C)	W _{corr}	m(0/)	
Temperatura (C)	0 mg·L ⁻¹	100 mg·L ⁻¹	η (%)
25	1,622 ± 0,256	0,600 ± 0,025	63,0 ± 0,5
35	3,557 ± 0,083	1,069 ± 0,052	69,9 ± 0,2
45	6,782 ± 0,067	2,367 ± 0,044	65,1 ± 0,7
55	12,114 ± 0,130	6,256 ± 0,158	48,4 ± 0,1

A perda de massa é sempre mais acentuada na ausência do inibidor nas temperaturas testadas (25, 35, 45 e 55 °C). A energia de ativação aparente (E_a) foi determinada por meio de um gráfico de Arrhenius conforme a equação:

$$\log w_{cor} = \frac{E_a}{2,303RT} + \log A \qquad \text{Eq. 5}$$

onde w_{cor} é a taxa de corrosão, A é o fator de frequência, T é a temperatura absoluta e R é a constante universal dos gases ideais. A Figura 5 apresenta o gráfico de Arrhenius (log W_{corr}) versus (1/T) para o aço-carbono em 1,0 mol·L⁻¹ na ausência e na presença de 100 mg·L⁻¹ do extrato etanólico de A. canelilla.

A energia de ativação aparente determinada para o processo de corrosão na solução ácida foi de 54,4 kJ·mol⁻¹, e com a adição de 100 mg·L⁻¹ do extrato de *A. canelilla* foi 63,4 kJ·mol⁻¹. A barreira energética do processo corrosivo aumenta com a presença do inibidor, corroborando a diminuição da taxa de corrosão provocada pelo extrato vegetal. A elevação da energia de ativação em função da presença do extrato vegetal é indício de um mecanismo de adsorção física.

Entretanto, caso o mecanismo de adsorção fosse unicamente físico, deveríamos observar uma queda na eficiência de inibição com a elevação da temperatura, o que não ocorre entre 25 a 45 °C (Tabela 5). Possivelmente, em função da grande diversidade de moléculas orgânicas presentes no extrato, o mecanismo de inibição deve ser mais complexo, envolvendo tanto processos químicos quanto físicos. Como os ensaios foram feitos com complexas soluções inibidoras, o que não permite conhecer a massa molecular de todas as entidades guímicas envolvidas, não é possível determinar outros parâmetros termodinâmicos.23,24

Os dados obtidos nos ensaios de perda de massa para 24 h de exposição foram usados para determinar a fração da superfície protegida (Equação 6):

$$\theta = \frac{\eta\%}{100}$$
 Eq. 6

Os resultados obtidos foram então ajustados à isoterma de adsorção de Langmuir (Figura 6) conforme a Equação 7:

$$\frac{C}{\theta} = C + \frac{1}{K}$$
 Eq. 7

onde C é a concentração do inibidor, θ é fração da superfície protegida e K é a constante de adsorção.

Os dados obtidos permitiram um excelente ajuste ao modelo de isoterma de Langmuir,

com coeficiente de determinação (r^2) superior a 0,9999 e a declividade estimada em 1,172. Este resultado indica que as substâncias presentes no extrato etanólico de *A. canelilla* adsorvidas na superfície do aço-carbono não apresentam interação entre si em monocamada, como é assumida na teoria da isoterma de Langmuir.

Figura 6. Isoterma de adsorção de Langmuir do extrato de *Aniba canelilla* no aço-carbono em H_2SO_4 1,0 mol·L⁻¹

3.3. Espectrometria de massas do extrato etanólico do caule de *A. canelilla*

A análise por espectrometria de massas (Figura 7) do extrato avaliado evidenciou a presença de vários picos de razão m/z compatíveis com alcaloides já isolados das cascas do caule de *A. Canelilla*. Os picos ($[M+H]^+$) de *m/z* 330, 300 e 286 foram observados com maior intensidade na fração alcaloídica. O íon M+1 330 é compatível com a reticulina.^{14,15} Este íon, ao ser fragmentado,

gerou os íons filho em m/z 299, 192 e 175, que estão relatados para a fragmentação desta molécula.^{25,26} Já o íon ($[M+H]^+$) de m/z300 é compatível com a N-metilcoclaurina, (+)-canelillina e (*R*)-(+)-noranicanina.^{14,15} A fragmentação do íon m/z 300 possibilitou a detecção dos íons filho em m/z 269, 237, 192, 175, 145, 137 e 107, compatíveis com os dados de fragmentação da N-metilcoclaurina obtidos da literatura.²⁵ O íon $[M+H]^+$ de m/z286 foi compatível com os alcaloides (-)-(-)-norjuzifina coclaurina, ou (-)norcanelillina.14,15

Figura 7. Espectrograma da fração alcaloídica do extrato de Aniba canelilla com os alcaloides identificados: N-metilcoclaurina e reticulina

No espectrograma obtido da fração alcaloídica de A. canelilla (Figura 7) também foram observados íons M+1 com valores compatíveis outros alcaloides. Por exemplo, o íon ($[M+H]^+$) de *m*/z de 298, é compatível com (-)-glaziovina, (-)-apoglaziovina, (-)-anibacanina canelillinoxina, e (-)pseudoanibacanina.^{14,15} O íon ([M+H]⁺) de m/z 312 é compatível com as estruturas de (+)-manibacanina, (+)-pseudomanibacanina, (-)-α-8-metilpseudoanibacanina, (-)-βmetilpseudoanibacanina (-)-α-8е metilanibacanina.^{14,15} O íon ($[M+H]^+$), de m/z314, é compatível com o alcaloide anicanina, enquanto que o pico de *m/z* 328 é compatível com os alcaloides (+)norisocoridina e (+)-isoboldina.^{14,15}

Em trabalho realizado com outra espécie do mesmo gênero aqui estudado, A. roseodora, observou-se que a inibição da corrosão se deve à presença do alcaloide anibina.⁸ A investigação do potencial de inibição de corrosão por Garcinia kola mostrou que a presença de alcaloides nos seus extratos amplifica essa atividade.²⁷ Alcaloides indólicos isolados de Alstonia angustifolia var. latifolia também se mostraram eficientes inibidores de corrosão em aço-carbono em meio ácido.²⁸

Não foram realizados ensaios para identificar as substâncias responsáveis pela inibição observado no extrato de *A. canelilla*, entretanto, esta atividade provavelmente está relacionada com os alcaloides produzidos por esta espécie, como está amplamente documentado na literatura.⁶⁻ 8,27,28

4. Conclusão

O extrato etanólico do caule de Aniba canelilla mostrou-se ser um eficiente inibidor de corrosão para aço-carbonoUNS G10200 em solução de ácido sulfúrico (1,0 mol·L⁻¹) a 25 °C.

Os resultados encontrados nas curvas de polarização mostraram uma relação dosedependente na redução da densidade de corrente de corrosão.

A espectroscopia de impedância eletroquímica corrobora os dados observados nas curvas de polarização, mostrando um ganho de eficiência de inibição com o aumento da concentração do extrato e o processo de adsorção de substâncias presentes no extrato de *A*.

de Barros, I. B. et al.

canelilla na superfície do metal obedece à isoterma de adsorção de Langmuir. Observou-se que há um ganho na eficiência de inibição entre os tempos de 2 h e 24 h, provavelmente em função do processo de adsorção. A eficiência de inibição permanece estável entre 24 h e 72 h à temperatura ambiente. Por fim, foi possível identificar a presença dos alcaloides reticulina e *N*metilclocaurina no extrato avaliado.

Agradecimentos

À CAPES,à FAPERJ e ao CNPq pelo apoio financeiro.

Referências Bibliográficas

¹ Gece, G. Drugs: A review of promising novel corrosion inhibitors. *Corrosion Science* **2011**, *53*, 3873. [CrossRef]

² Pereira, S. S. A. A.; Pêgas, M. M.; Fernández, T. L.; Magalhães, M.; Schöntog, T. G., Lago, D. C.; de Senna; L. F., D'Elia, E. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution. *Corrosion Science* **2012**, *65*, 360. [CrossRef]

³ Rani, B. E. A.; Basu, B. B. J. Green inhibitors for corrosion protection of metals and alloys: An overview. *International Journal of Corrosion* **2012**, ID 380217. [CrossRef]

⁴ Roberge, P. R. *Corrosion inhibitors, Handbook of Corrosion Engineering*, McGraw-Hill, New York, 1999.

⁵ Custódio, D. L.; Veiga Junior, V. F. Lauraceae alkaloids. *RCS Advances* **2014**, *4*, 21864. [CrossRef]

⁶ Souza, F. S.; Gonçalves, R. S.; Spinelli, A. Assessment of caffeine adsorption onto mild steel surface as an eco-friendly corrosion inhibitor. *Journal of the Brazilian Chemical Society* **2014**, *25*, 81. [CrossRef]

⁷ Trindade, L. G.; Gonçalves, R. S. Evidence of caffeine adsorption on a low-carbon steel surface. *Corrosion Science* **2009**, *51*, 1578. [CrossRef]

⁸ Chevalier, M.; Robert, F.; Amusant, N.; Traisnel, M.; Roos, C.; Lebrini, M. Enhanced corrosion resistance of mild steel in 1 M hydrochloric acid solution by alkaloids extract from *Aniba rosaeodora* plant: Electrochemical, phytochemical and XPS. *Electrochimica Acta* **2014**, *131*, 96. [CrossRef] ⁹ Gottlieb, O.; Magalhães, M. T. Essential oil of the bark and wood of *Aniba canelilla*. *Perfumery and Essential Oil Record* **1960**, *51*, 69.

¹⁰ Oger, J. M.; Richomme, P.; Guinaudeau, H.; Bouchara, J. P.; Fournet, A. *Aniba canelilla* (H. B. K.) Mezessential oil: analysis of chemical constituents, fungistatic properties. *Journal of Essential Oil Research* **1994**, *6*, 493. [CrossRef]

¹¹ Taveira, F. S. N.; Lima, W. N. de; Andrade, E. H. A.; Maia, J. G. S. Seasonal essential oil variation of *Aniba canelilla*. *Biochemical Systematics and Ecology* **2003**, *31*, 69. [CrossRef]

¹² Silva, J. K. R.; Sousa, P. J. C.; Andrade, E. H. A.; Maia, J. G. S. Antioxidant capacity and citotoxicity of essential oil and methanol extract of *Aniba canellila* (H. B. K.) Mez. *Journal of Agricultural and Food Chemistry* **2007**, *55*, 9422. [CrossRef] [PubMed]

¹³ Lima, A. B.; Santana, M. B.; Cardoso, A. S.; Silva, J. K. R.; Maia, J. G. S.; Carvalho, J. C. T.; Sousa, P. J. C. Antinociceptive activity of 1nitro-2-phenylethane, the main component of *Anibacanellila* essential oil. *Phytomedicine* **2009**, *16*, 555. [CrossRef] [PubMed]

¹⁴ Oger, J. M.; Duval, O.; Richomme, P.; Bruneton, J.; Guinaudeau, H.; Fournet. A. (*R*)-(+)-noranicanine a new type of trioxygenated benzylisoquinoline isolation and synthesis. *Heterocycles* **1992**, *34*, 17. [CrossRef]

¹⁵ Oger, J. M.; Fardeau, A.; Richomme, P.; Guinaudeau, H.; Fournet, A. Nouveaux alcaloides isoquinoléiques isolés d'une *Lauraceae bolivienne: Aniba canelilla* H. B. K. *Canadian Journal of Chemistry* **1993**, *71*, 1128. [<u>CrossRef</u>]

¹⁶ Raja, P. B.; Sethuraman, M. G. Natural products as corrosion inhibitor for metals in corrosive media - A review. *Materials Letters* **2008**, *62*, 113. [CrossRef]

¹⁷ Mitchell, R. H.; Scott, W. A.; West, P. R. The extraction of caffeine from tea. *Journal of Chemical Education* **1974**, *51*, 69. [CrossRef]

¹⁸ Ferreira E. S.; Giacomelli, C.; Giacomelli, F.
 C.; Spinelli, A. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. *Materials Chemistry and Physics* 2004, *83*, 129. [CrossRef]

¹⁹ Bentrah, H.; Rahali, Y.; Chala, A. Gun Arabic as an eco-friendly inhibitor for API 5L X42 pipeline steel in HCl medium. *Corrosion Science* **2014**, *82*, 426. [CrossRef]

²⁰ Mourya, P.; Banerjee, S.; Singh, M. M. Corrosion inhibition of mild steel in acidic solution by Tageteserecta (Marigold flower) extract as a green inhibitor. *Corrosion Science* **2014**, *85*, 352. [CrossRef]

²¹ Gabrielli, C. Identification of electrochemical processes by frequency response analysis. Technical Report Number 004/83. Solartron Analytical, Paris, 1998.

²² Orazem, M. E.; Tribollet, B. *Electrochemical Impedance Spectroscopy*, John Wiley & Sons, New Jersey, 2008. [<u>CrossRef</u>]

²³ Loganayagy, C.; Kamal, C.; Sethuraman, M.
G. Opuntiol: An active principle of *Opuntiaelatior* as an eco-friendly inhibitor of corrosion of mild steel in acid medium. *ACS Sustainable Chemistry & Engineering* **2014**, *2*, 606. [CrossRef]

²⁴ Kamal, C.; Sethuraman, M. G.*Hydroclathrusclathratus* marine alga as a

green inhibitor of acid corrosion of mild steel. *Research on Chemical Intermediates* **2013**, *39*, 2813. [CrossRef]

²⁵ Schmidt, J.; Raith, K.; Boettcher, C.; Zenk, M. H. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. *European Journal of Mass Spectrometry* **2005**, *11*, 325. [CrossRef] [PubMed]

²⁶ Wu, Y. J.; Zheng, Y. L.; Luan, L. J.; Liu, X. S.; Han, Z.; Ren, Y. P.; Gan, L. S.; Zhou, C. X. Development of the fingerprint for the quality of *Radix Linderae* through ultrapressure liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry. *Journal of Separation Science* **2010**, *33*, 2734. [CrossRef] [PubMed]

²⁷ Ikeuba, A. I.; Okafor, P. C.; Ekpe, U. J.; Ebenso, E. E. Alkaloid and non-alkaloid ethanolic extracts from seeds of *Garcinia kola* as green corrosion inhibitors of mild steel in H₂SO₄ solution. *International Journal of Electrochemical Science* **2013**, *8*, 7455. [Link]

²⁸ Raja, P. B.; Qureshi, A. K.; Rahim, A. A.; Awang, K.; Mukhtar, M. R.; Osman, H. Indole alkaloids of *Alstonia angustifolia* var. *latifolia* as green inhibitor for mild steel corrosion in 1 M HCl media. *Journal of Materials Engineering and Performance* **2013**, *22*, 1072. [CrossRef]