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Otimização Estrutural de 6-Arilpiridazin-3-onas como Potentes Inibidores 
da PDE4 

Resumo: A síntese e a análise da relação estrutura-atividade (REA) de uma série de 

derivados 4,5-di-hidropiridazin-3-onas como inibidores de PDE4 foi descrita. 

Explorações topológicas na posição N-2 do anel piridazina permitiu identificação de 

interações adicionais no sítio de ligação da enzima PDE4, levando a compostos 

significativamente mais potentes (10v, IC50 ~20 nM) com aumento da solubilidade em 

água. 

Palavras-chave: Fosfodiesterase-4; 4,5-di-hidropiridazin-3-onas; Relações Estrutura-

Atividade. 

 

Abstract 

The synthesis and structure-activity relationship (SAR) analysis of series of 4,5-

dihydropyridazin-3-one derivatives as PDE4 inhibitors are described. Topological 

explorations at the position N-2 of the pyridazine ring allowed identification of 

additional interactions with PDE4 binding site, leading to significantly more potent 

compounds (10v, IC50 ~20 nM) with increased water solubility. 

Keywords: Phosphodiesterase-4; 4,5-dihydropyridazin-3-ones; Structure-Activity 

Relationships. 
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1. Introduction 

 

The different eleven major subclasses of 

cyclic nucleotide phosphodiesterases (PDE) 

constitute attractive targets for the design of 

new therapeutic agents.
1,2 

 In particular the 

phosphodiesterase-4 (PDE4) is responsible 

for specific hydrolysis of cyclic adenosine 

monophosphate (cAMP), and is mainly 

located in airway smooth muscles, in immune 

and inflammatory cells, but also in the 

brain.
3,4

 

The antidepressant rolipram (1) was 

identified as the first selective PDE4 inhibitor 

with a µM range IC50 value, and served as a 

lead structure for further optimizations. SAR 

analyses clearly highlighted the role played 
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by the lipophilic cyclopentyloxy group (Figure 

1) in the structure of rolipram,
5
 and 

constituted a key pharmacophoric 

requirement for more potent PDE4 inhibitors 

structurally-related to rolipram such as RP 

73401 (2).
6
 

Zardaverine (3) is a 6-aryl-pyridazinone 

with antiinflammatory properties, that are 

related with its PDE4/PDE3 inhibitory profile.
7
 

In the past, other 6-aryl pyridazinones were 

identified as inhibitors of cardiac 

phosphodiesterase 3 (PDE3) that present 

potent cardiotonic activity.
8-12

 Recently, other 

classes of compounds that showed 

interaction with PDE4 were developed, such 

as the pyrazolo[1,5-a]pyridines, among which 

the compound 4, showed an IC50 of 0.27 nM 

for PDE4 and presented anti-inflammatory 

properties in animal models.
13

 

The aim of this work was to better 

characterize substituent effects on both 

potency and selectivity of a series of 

differently substituted 6-aryl-pyridazinones. 
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Figure 1. Rolipram and structurally-related compounds as PDE4 inhibitors 

 

2. Materials and Methods 

 

The NH free 6-(3,4-dimethoxyphenyl)-

dihydropyridazinone derivative 8a was used 

as internal reference for SAR analysis, 

whereas the unsaturated pyridazinone 12 

was proved to present the same potency on 

PDE 4. Moreover the N-2 nitrogen was used 

as an anchor point for further topological 

explorations. Applying homology and 

molecular diversity concepts, a limited 

number of lengths and chemical functions 

(cations, anions, H bond acceptor-donor 

systems, aromatics) were easily introduced at 

the N-2 nitrogen. 

The selected dihydropyridazinones 10a-h 

were prepared by refluxing the 

corresponding -benzoyl propionic acid 

intermediate 7 with hydrazines. Moreover 

further N-substitutions could be obtained 

from the unsubstituted pyridazinone 8a in 

presence of NaH as a base and various 

functionalized halides. 

Two different approaches were chosen for 

preparing the -benzoyl propionic acids. 

Classical Friedel-Crafts reaction
14

 using 

veratrol in presence of succinic anhydride 

and AlCl3 afforded the dimethoxyphenyl 

derivative 7. The Strecker reaction
15

 starting 

from the correctly substituted benzaldehyde 

9 was also used for building the meta alkoxy 

derivative 11 (Scheme 1). The final 

compounds have been purified by flash 

chromatography. The chromatographically 

pure compounds gave NMR spectra in 

agreement with their expected structures. 

Detailed experimental procedures and 

characterizations will be given elsewhere. 
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Scheme 1. Reagents and conditions: (i) succinic anhydride (1.0 equiv.), AlCl3 (5.0 equiv.), 

nitrobenzene, rt, 24 h, 66%; (ii) hydrazine hydrate or phenyl hydrazine (2.0equiv.), n-BuOH, 85 

°C, 2h, 96%; (iii) NaH (1.1 equiv., in 60% oil suspension), RBr (1.1 equiv.), DMF, rt, 0.25-0.5 h, 

53-98% 

 

The choice of representatives for 

exploring the molecular diversity was 

partially driven by the easy transformations 

between chemical moieties (i.e. CO2Et  

CO2H  CONR1R2, OH  NR1R2, NHBoc  

NH2  NHCOR). In general three different 

lengths were chosen for the linker, 

representing short (n = 1 or 2), medium (n = 3 

or 4), and large (n = 5 or 6) distance 

interactions between the main pyridazine 

scaffold and the functional group FG. 

Cytosolic PDE4 isoforms (PDE1, PDE3, 

PDE4, and PDE5) were purified by anion-

exchange chromatography from the medial 

layer of bovine aorta and PDE2 was isolated 

from human platelets as previously 

described.
16

 PDE activities were measured by 

radio enzymatic assay at a substrate 

concentration of 1µM cAMP in the presence 

of 15000 cpm [
3
H]-cAMP as a tracer.

17 
The 

buffer solution was of the following 

composition: 48 mM Tris-HCl pH 7.5, 2 mM 

magnesium acetate, and 1 mM ethylene 

glycol bis(-aminoethylether) N,N,N,N’-
tetracetic acid (EGTA). To prevent the 

influence of cross-contamination with PDE3 

the study was always carried out in the 

presence of 50 µM cGMP. The compounds 

were dissolved in DMSO. The final 

concentration of DMSO in the assay (1%) did 

not affect PDE activity. The concentration of 

compounds that produced 50% inhibition of 

substrate hydrolysis (IC50) values was 

calculated by non linear regression analysis 

from concentration-response curves (Prism 

software) and represented the mean value of 

three determinations.
17 

 

3. Results and Discussion 

 

Compounds were first tested as PDE4-

inhibitors. The value of the percentage of 

inhibition  95% at 10 µM allowed us to 

select the most active compounds, for which 

both an IC50 value and a selectivity profile 

towards other PDE isoforms could be 

determined. Results are given in Tables 1 and 

2. 

Following this procedure, it is interesting 

to notice that both rolipram and the 

unsubstituted pyridazinone 11 presented 

similar potencies with IC50 of 0.6 µM, most 

probably as the result of the strong structural 

similarities between both representatives 

which share a common pharmacophoric 

pattern
5
. 
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Table 1. Inhibition of PDE4 by dihydropyridazinones 

N N

O

O O

(CH2)n-FG  

Compound
s 

Functiona
l Group 

(FG) 
n 

PDE4 
IC50

a µM, 
or (% of 

inhibitionb

) 

 

Compound
s 

Functional 
Group (FG) 

n 

PDE4 
IC50

a µM, 
or (% of 

inhibitionb

) 

Rolipram    0.6  10k CONH2 1 (58%) 

RP 73401   0.001  10l DMB
 c 

1 0.76 

5   53.0  10m DMB 
c 

3 0.60 

11   0.63 
 

10n 
CON

S 

1 (88%) 

8a H 0 2.0 
 

10o CON

 

3 (86%) 

8b Ph 0 0.55 

 

10p 

CON

N
CH3

 

3 (85%) 

10a Ph 1 0.06  10q NHBOC 
d
 3 0.48 

10b Ph 3 0.02  10r NHBOC 
d
 6 0.06 

10c OH 3 (79%)  10s NHCOPh 6 0.03 

10d OH 6 0.25  10t DMB 
c
 6 (90%) 

10e CO2Et 3 0.27 
 

10u N

 

6 (16%) 

10f CO2Me 4 0.17  10v NH2 6 0.02 

10g CO2H 1 (26%) 
 

10w N

O  

6 0.18 

10h CO2H 3 (70%) 
 

10x N

S  

6 0.21 

10i CO2H 4 1.4 

 

10y 
N

N
CH3  

6 0.39 

10j CONHOH 4 3.3      
a
The IC50 was calculated by linear regression (correlation coefficient r = 0.095) and 

represents the mean value of three determinations. The experimental error is about 15%. 
b
At 

10 µM of final drug concentration. 
c
DMB = 2,4 dimethoxybenzyl. 

d
BOC = tert-butyloxycarbonyl 
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Table 2. Selectivity of the most potent PDE4-inhibitors derived from dihydropyridazinones 

versus PDE1, PDE2, PDE3 and PDE5 

N N

O

O O

(CH2)n-FG  
Compounds FG n IC50

 a (µM) or (%) of inhibition at 10 µMb 

   PDE1 PDE2 PDE3 PDE4 PDE5 

8a H 0 (2%) (9%) (55%) 2.0 (10%) 

10a Ph 1 (23%) (26%) (58%) 0.06 (20%) 

10b Ph 3 (24%) (23%) (58%) 0.02 nd 

10r NHBoc 6 (12%) nd (65%) 0.065 (16%) 

10s NHCOPh 6 (25%) (46%) (60%) 0.032 (33%) 

10v NH2 6 (32%) (47%) (57%) 0.023 (27%) 
a
The IC50 was calculated by linear regression (correlation coefficient r = 0.095) and 

represents the mean value of three determinations. The experimental error is about 15%. nd = 

not determined. 

 

Examination of Table 1 shows that 

introduction of phenyl ring onto the N-2 

nitrogen of the pyridazine ring increased 

significantly the inhibitory activity 

(comparison of 8b with 8a). Moreover 

superior homologues were more potent, as 

illustrated by the potent N-phenylpropyl 

compound 10b, which presented an IC50 

value of 20 nM. In general, introduction of 

various H bond acceptor-donor groups (OH, 

carboxamides, N-acyl groups, etc.) at various 

distances (n = 3 to 6) was also promising. In 

particular the N-benzoyl derivative 10s (n=6) 

showed an IC50 of 30 nM. However, all these 

compounds are fairly soluble in water. 

Finally, the unsubstituted amino derivative 

10v (n=6) presented a similar IC50 value (20 

nM), but have showed increased water 

solubility. 

When we checked the selectivity profile of 

the most interesting compounds listed in 

Table 2. They all showed a good selectivity on 

PDE4 towards other PDE isoforms (2-3 orders 

of magnitude less potency). Previous papers 

have also shown that N-substitution of 

pyridazinone derivatives was beneficial for 

PDE4 activity.
10-13,18

 

 

The 6-aryl pyridazinones and rolipram 

behave as potent and selective inhibitors. 

The initial SAR analysis dealing with rolipram 

series allowed identification of a first 

pharmacophoric pattern highlighting a typical 

dialkoxyphenyl group bearing in meta 

position a lipophilic substituent. By another 

hand, a carbonyl dipole at a specific distance 

was critical for activity
5
. Further works based 

on the 3D crystal structure of PDE4 showed 

this carbonyl dipole was located close to Mg
2+

 

ion present in the catalytic site of the 

enzyme. 

Similar SAR analysis could be found within 

the pyridazinone series. The analysis of 3D 

structure of PDE4 co-crystallized with 

zardaverine, another 6-aryl-pyridazone 

presenting sub-micromolar IC50 value, 

showed that it was located in the catalytic 

site in a similar manner
19

. In addition easy N-

substitution of pyridazinone 8a allowed a first 

topological exploration in a new site which 

may accept diverse functional groups at 

different distances from the main binding 

pocket. In particular, additional hydrophobic 

interaction turned the starting µM compound 

8a into a potent PDE4 inhibitor 10b (IC50 = 20 

nM). In addition, when a flexible spacer (n=6) 

was used, the introduction of a primary 
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amino group (cpd 10v) was also beneficial, 

once it was able to increase not only its 

potency (IC50 = 20 nM), but also its water 

solubility. 

 

4. Conclusion 

 

In conclusion, this work opens a large 

avenue to further topological explorations in 

the vicinity of the catalytic site, allowing the 

design of novel PDE4 inhibitors with original 

pharmacological properties (water-soluble 

PDE4 inhibitors, dual-acting compounds, 

etc.). 
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