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Desenvolvimento e Validação de Modelo PLS para Quantificação do Teor de 
Biodiesel Proveniente de Óleo de Fritura em Diesel empregando HATR-MIR 

Resumo: Este trabalho apresenta o desenvolvimento e a validação de dois modelos PLS para quantificação de 
biodiesel metílico e biodiesel etílico provenientes de óleos de fritura em misturas com diesel empregando dados de 
espectroscopia no infravermelho médio. A exatidão dos modelos PLS mostraram excelente desempenho com baixos 
valores de RMSEC, RMSECV e RMSEP. Além disso, a exatidão foi comprovada pela avaliação da região de elipse de 
confiança. O método foi validado de acordo com as diretrizes internacionais e nacionais pela estimativa de figuras 
de mérito, tais como exatidão, precisão, linearidade, seletividade, sensibilidade analítica, limites de detecção e 
quantificação e erro sistemático. Uma excelente correlação foi observada entre os valores reais e previstos do 
conjunto de previsão (R = 0,9999) e os modelos não apresentaram erros sistemáticos conforme a norma ASTM 
E1655. Os modelos propostos utilizam uma única faixa espectral permitindo a determinação de biodiesel em 
mistura com diesel na faixa de concentração entre 1,00 e 30,00% (v/v), em ambos os modelos. Assim, as 
metodologias propostas foram validadas sem a necessidade de escolher faixas espectrais se comparado com as 
normas pertinentes que regulamentam a determinação do teor de biodiesel em mistura com diesel. 

Palavras-chave: Biodiesel; óleo de fritura; espectroscopia no infravermelho; calibração multivariada; PLS; validação 
analítica. 

Abstract 

This study presents the development and validation of two PLS models for quantification of methyl and ethyl 
biodiesels from waste frying oils in diesel blends by mid-infrared spectroscopy. The accuracy of the PLS models 
showed excellent performance by presenting low values of RMSEC, RMSECV and RMSEP. The PLS models provided 
RMSEC of 0.07% (v/v) and 0.04% (v/v) for the models containing methyl and ethyl biodiesels, respectively; and 
RMSEP of 0.09% (v/v) and 0.05% (v/v). Addition to the parameters of error it was evaluated the accuracy by 
elliptical joint confidence region. The method was validated according to international and national guidelines by 
the estimation of figures of merit, such as accuracy, precision, linearity, selectivity, analytical sensitivity, limits of 
detection and quantification and systematic error. An excellent correlation was observed in prediction set (R = 
0.9999), and no systematic errors were present according to the ASTM E1655 standard. The proposed models for 
the entire spectral region allowed the determination of both methyl and ethyl biodiesels from waste frying oil in 
diesel using concentrations between 1.00 and 30.00% (v/v). The proposed methodologies were validated and no 
need for selecting intervals if compared with relevant standards that regulate the determination of biodiesel blend 
levels in diesel. 
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1. Introduction 

 

Biodiesel may be produced from different 
vegetable oils and animal fats. However, the 
costs of raw material and a limited availability 
of these vegetable oils can be a problem for 
biodiesel production. The costs of using 
vegetable oils to produce biodiesel can reach 
75%, resulting in a biodiesel production that 
is approximately 1.5 times greater than diesel 

oil.1 The problem of this high cost can be 
alleviated by using low cost raw materials 
such as waste frying oils.2,3 The conversion of 
this huge amount of waste frying oil into the 
fuel decreases the environmental impacts 
caused by the harmful disposal of these oils. 
Furthermore, it is possible to greatly reduce 
the total manufacturing costs since the price 
of waste frying oils is 2 to 3 times cheaper 
than virgin vegetable oils.4,5  

Waste frying oils are generated in huge 
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quantities after frying food in industrial 
environments, e.g., such as fast-food chains 
and restaurants. Thus, a substantial quantity 
of waste frying oil is generated every year. 
Currently, a very small percentage of these 
oils has been used in soap production. 
However, the soap produced from frying oil 
has poor quality, and the most part of waste 
frying oil goes down the sink, increasing 
ecological and economic problems. Thus, 
waste frying oil is a better alternative as a 
raw material for biodiesel production than 
other raw materials such as edible oil, non-
edible oil and animal fats which are very 
costly and result in the high cost of biodiesel.6 

In the literature, several studies were 
published upon the investigation of biodiesel 
production using frying oil through acidic or 
basic catalysis.2,4,7,8 

Therefore, the biodiesel production from 
waste frying oil is a reality in the world. 
Because of this, the quantification of this 
type of biofuel mixed with diesel is essential, 
and the vibrational spectroscopy associated 
to multivariate analysis has been shown as a 
powerful tool to evaluate the biodiesel 
content in diesel.9-11 However, most of the 
papers quantify biodiesel by PLS and evaluate 
only one kind of biodiesel (methyl soybean 
biodiesel) and do not conduct a study of the 
validation of the respective analytical 
methods. Thus, when an analytical procedure 
is developed or there is a change in scope, it 
is necessary to validate the results to make 
the method reliable and suitable with the 
required quality. The standard that guides 
the validation of methods based on infrared 
spectroscopy is ASTM E1655 which refers to 
standard practices in quantitative analysis.12 
However, in addition to the guidelines 
contained in the standard method other 
figures of merit (FOM) were calculated as 
linearity, adjustment, selectivity, analytical 
sensitivity, limits of detection and 
quantification. The main concept that has 
emerged in recent years for the calculation of 
figures of merit for multivariate calibration is 
the net analyte signal (NAS) that represents a 
breakthrough because it allows the 
separation of specific information of the 

analyte from the total signal.13-17 

Therefore, the present study development 
and validated multivariate calibration models 
for quantification of methyl (FAME) and ethyl 
(FAEE) biodiesels from waste frying oil in 
diesel blends using the partial-least-squares 
(PLS) regression method and mid-infrared 
(MIR) spectroscopy verifying its adequacy 
with the requirements of the ABNT NBR 
15568 standard.18 

 

2. Experimental section 

 

2.1. Sample preparation 

 

In this study, two partial-least-squares 

(PLS) regression models were proposed in 

order to determine biodiesel content from 

waste frying oil in diesel blends. The 

methyl (FAME) and ethyl (FAEE) 

biodiesels were provided by LABIO 

(Laboratory of Biofuels of the Institute of 

Chemistry) at the Federal University of 

Uberlândia, state of Minas Gerais, Brazil. 

To construct the model, 77 biodiesel-

diesel blends were prepared at 

concentrations ranging from 0.25 to 

30.00% (v/v). The pure diesel was 

provided by Transpetro S/A (Uberlândia, 

state of Minas Gerais, Brazil).  

 

2.2. HATR-MIR spectra 

acquisition 

 

The MIR spectra were acquired with a 
Perkin Elmer Spectrum Two spectrometer 
using the attenuated total reflectance (ATR) 
sample holder with a ZnSe crystal. The 
spectra were recorded in the range of 4000 
to 600 cm-1 with a 4 cm-1 resolution and 
triplicates were acquired in 16 scans. The 
spectral baselines were corrected using 
baseline method in the range of 3150 to 4000 
cm-1 and 1850 to 2500 cm-1. The initial data 
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matrix was composed of 77 spectra with 
2401 variables per spectrum. 

 

2.3. Outlier detection 

 

The outliers were detected by 
identifying samples with high leverage and 
residuals in the spectral data or high residuals 
in the analytical concentrations19 at a 
significance level of 5%. The outliers  were  
also  detected  by  comparing  high  values  of  
absolute  errors  in  individual  samples with 
the root-mean-squared errors of calibration 
(RMSEC). Thus, if the difference between the 
reference value and the estimated value of a 
sample was greater than three times the 
RMSEC, the sample was excluded.20 

 

2.4. Chemometric analysis 

 

The PLS models were built by using 49 
samples in calibration set and 28 samples in 
prediction set. The data were mean-centered 
and the leave-one-out method was employed 
for the internal validation. The number of 
latent variables was selected according to the 
percentage of variance that was explained in 
X (absorbance) and Y (concentration) blocks 
on the joint comparison containing the plot 
of the root-mean-square error of cross-
validation (RMSECV). The PLS method were 
performed with Matlab 6.1 (Mathworks Inc.) 
software and PLS_Toolbox 3.5 (Eigenvector 
Research). 

 

2.5. Figures of merit 

 

The accuracy of the models were 
expressed as the root mean square error of 
calibration (RMSEC), root mean square error 
of cross-validation (RMSECV), and root mean 
square error of prediction (RMSEP), 

according to the Eq. 1.21 In addition, the 
better indicator including the consideration 
of the elliptical joint confidence region (EJCR) 
was performed.11 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖− ŷ𝑖)2𝑛

𝑖=1

𝑛
 (1) 

 

Where ŷi and yi are the model-estimated 
value and the reference value for sample i, 
respectively, and n is the number of samples. 

Precision was calculated foreseeing the 
calibration models in five concentration 
levels, as 5.00, 7.00, 10.00, 15.00 and 25.00% 
(v/v). Seven measurements were made for 
each level, as required by ASTM E1655. The 
standard deviation of the measurements was 
calculated using Eq. 2.12  

 

𝜎𝑖 = √
∑ (ŷ𝑖𝑗−ӯ𝑖)2𝑟𝑖

𝑗=1

𝑟𝑖−1
  (2) 

 

Where, ӯ𝑖  is the mean value of the 
estimated values and 𝑟𝑖 is number of 
measurements per level. The relative 
standard deviation (RSD) was calculated by 
Eq. 3. 

 

𝑅𝑆𝐷 (%) =
∑

𝜎𝑖
ӯ𝑖

.100𝑛
𝑖=1

𝑝
  (3) 

 

Where, 𝑝 is the number of concentration 
levels evaluated. 

Intermediate precision (RSDpi) was 
calculated by the standard deviation 
measurements of five concentration levels 
with seven replicates and three consecutive 
days, using Eq. 4.22  
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𝑅𝑆𝐷𝑝𝑖(𝑖,𝑘) = √
1

𝑡(𝑟𝑖−1)
∑ ∑ (𝑦𝑖𝑘 −  ӯ𝑖)2𝑟𝑖

𝑘=1
𝑡
𝑖=1   (4) 

 

Where,  

t is the total number of tested samples; 

𝑟𝑖 is the number of measurements per 
level; 

𝑦𝑖𝑘  is the result of k value for the i 
sample. 

The fit of the PLS models was evaluated 
by correlating the real values with the 
predicted values from the prediction set. 
Furthermore, the linearity was used for a 
qualitative estimation of the model linearity 
through distribution of residuals versus the 
reference values. 

Equation 5 was used to calculate the 
sensitivity (SÊN), in this work, where b is the 
vector of final regression coefficients, which 
can be obtained by any multivariate 
method.24,25 

 

SÊN =
1

||bk||
  (5) 

 

The analytical sensitivity (), which is 
defined in analogy to univariate calibration, is 
calculated according to the Eq. 6.26,27 

 

𝛾 =
𝑆Ê𝑁

||𝛿𝑥||
   (6) 

 

Where x is an estimate for the 
instrumental noise, through nine replicate 
spectra of the pure diesel. 

The selectivity (𝑆Ê𝐿𝑘,𝑖) was calculated 
using Eq. 7.24,25 

 

𝑆Ê𝐿𝑘,𝑖 =
𝑛â𝑠𝑘,𝑖

||𝑥𝑘,𝑖||
  (7) 

 

Where, 𝑛â𝑠𝑘,𝑖 is the scalar value of the 
net analyte signal for sample i; 𝑥𝑘,𝑖 is the 
vector of instrumental response for sample i.  

The limits of detection and 
quantification were calculated analogously, 
as for univariate calibration, according to the 
Eq. 8 and Eq. 9, respectively.28 

𝐿𝐷 = 3.3𝛿𝑥
1

𝑆Ê𝑁
 (8) 

 

𝐿𝑄 = 10𝛿𝑥
1

𝑆Ê𝑁
  (9) 

 

3. Results and discussion 

 

The Figure 1 presents the mid-infrared 
spectra of biodiesel/diesel blends in 
concentrations from 0.25% to 30.00% (v/v). 
The characteristic absorption bands of 
biodiesels occur in spectral regions of 1300 to 
1000 cm-1 and 1750 to 1735 cm-1. These 
regions refer to the C-O and C=O bond 
stretching, respectively.18 Figure 1a shows 
the spectrum after baseline correction 
employing baseline method. Moreover, the 
initial and final strips were removed due to 
noise signals and no response, respectively. 
Thus the range of the mid-infrared employed 
in the construction of the PLS models limited 
3100 to 700 cm-1. 
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Figure 1. Mid-infrared spectra of samples of biodiesel blended with diesel in the 
concentration range from 0.25% to 30.00% (v/v). (a) methyl biodiesel from waste frying oil; (b) 
ethyl biodiesel from waste frying oil; (a.1) and (b.1) the spectral baselines corrected by 
baseline method 

 

An important step in the construction of 
multivariate calibration models is the 
identification of outliers that can affect the 
overall quality of the models.29 Figure 2 plots 
the Q residuals versus the leverage. The 
horizontal lines represent the limits of 
studentized residuals at 95% confidence. The 
vertical line represents the critical influence 
of the leverage value, defined as 3 k/n in 
which k is the number of factors and n is the 

number of samples.30 Based on the plots, 
none of the samples was considered an 
outlier in the evaluated spectral region. 
However, outliers were detected from high 
absolute errors of the individual samples by 
comparing the RMSEC value. These outliers 
occurred in low concentration samples, 
limiting the useful range of the models 
between 1.00 and 30.00% (v/v). 
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Figure 2. Plot of the spectral residuals versus the leverage at a significance level of 5% for (a) 
FAME and (b) FAEE from waste frying oil 

 

The ASTM E1655 standard12 establishes a 
minimum number of samples for 
constructing PLS models using infrared 
spectroscopy. Thus, the number of samples 
must equal 6(k + 1) for mean-centered data 
in calibration set and 4k in prediction set. The 
k values correspond to the number of latent 
variables selected in the model. The PLS 
models were build with four latent variables. 
The number of variables in the model 

containing methyl biodiesel was chosen due 
to the lower RMSECV, which explained 
99.96% of the variance in X and 99.99% in Y. 
To determine the ethyl biodiesel content, the 
explained variance values were 99.99% in X 
and 100% in Y. Therefore, the number of 
samples in calibration and prediction sets 
(Table 1) complies with the ASTM E1655 
standard requeriments.12 

 

Table 1. Root-mean-square errors of calibration, cross-validation and prediction for the PLS 
models of FAME and FAEE blended with diesel both with and without outlier detection 

PLS models FAME FAEE 

Number of calibration samples 49 45* 49 45* 
Number of prediction samples 28 28 28 28 

RMSECV (% v/v) 0.12 0.09 0.05 0.05 
RMSEC (% v/v) 0.10 0.07 0.04 0.04 
RMSEP (% v/v) 0.12 0.09 0.06 0.05 

* after removal of outliers samples 

 

The Brazilian method18 uses separating 
analytical models for ranges between 0-8% 
(v/v) and of 8–30% (v/v) biodiesel. These 
models must also have RMSEP below 0.1% 
(v/v) and 1% (v/v) for the aforementioned 
ranges, respectively. By comparing the build 
models with the requirements of the ABNT 
NBR 15568 standard, the models show 
RMSEP values below 0.10% for the range 
between 1.00 and 30.00% (v/v). Thus, the 
proposed models are capable of determining 

biodiesel in a diesel blend using a single 
concentration range instead of two as 
proposed by the Brazilian standard. In 
addition, due to the future Brazilian 
requirement for the addition of 10% (v/v) 
biodiesel into diesel, the ABNT NBR 15568 
allows an accuracy of up to 1% for that 
biodiesel content. Therefore, the accuracy of 
the PLS models proposed follows the 
requirements of this standard. Figure 3 
shows the EJCR for the PLS results and 
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showed there was no significant difference 
between the prepared concentration values 
and PLS predicted concentration values, and 
that there was no evidence of bias within the 

95% confidence level. Furthermore, the 
proposed models can be employed to 
determine both FAME and FAEE without 
requiring spectral region selection. 

 

 

Figure 3. Elliptical joint confidence regions for the intercept and slope corresponding to 
regressions of measured concentration values versus PLS model predicted concentration 

values (% v/v) of the prediction set. (a) FAME and (b) FAEE from waste frying oil 

 

The evaluation of the fit of the models 
was done by correlating the reference values 
and the values calculated by the models of 

the prediction set. The excellent correlation 
(R = 0.9999) was obtained in both models 
(Figure 4). 

 

 

 

Figure 4. Fit of the PLS models through the real versus predicted values of the prediction set: 
(a) FAME and (b) FAEE from waste frying oil 

 

The linearity of the models was 
determined using the PLS residuals, which in 
Figure 5 shows a random distribution of the 

errors evidencing the absence of systematic 
trends, as the models present a linear 
behaviour. 
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Figure 5. PLS residuals for the calibration and prediction set for the biodiesels from waste 
frying oil. (a) FAME biodiesel/diesel blend and (b) FAEE biodiesel/diesel blend 

 

Table 2 shows the figures of merit 
estimated to validate the PLS models. The 
precision expresses the closeness of 
agreement between the results of a series of 
measurements for the same homogeneous 
sample under specified conditions. Analysing 
the RSD (Table 2) it is verified that it was 
satisfactory, i.e., less than 1% in both models. 
Regarding the RSD, intermediate precision 
values were close to 0.11%. The limit of 
detection and the limit of quantification of 

the PLS models (Table 2) it was verified that 
the PLS models could detect amounts above 
0.11% (v/v) of biodiesel in diesel, while for 
the quantification, the model could not 
determine values lower than 0.34% (v/v). As 
the concentration of biodiesel in the 
proposals PLS models ranging from 1.00% to 
30.00% (v/v), the models are effective to 
detect and quantify the biodiesels in diesel 
blends at concentrations higher than 0.34% 
(v/v). 

 

Table 2. Parameters estimated for evaluating the main FOM of the PLS models 

Figures of merit Parameter Value 

FAME FAEE 

Precision RSD repeatability (%) 
RSD intermediate precision (%) 

0.60 
0.10 

0.72 
0.10 

Limit of detection (% v/v)  0.11 0.10 
Limit of quantification (% v/v)  0.34 0.30 

Selectivity  0.10 0.03 
Sensitivity  0.08 0.09 

Analytical Sensitivity  29.14 32.80 
Inverse of analytical sensitivity  0.03 0.03 

Systematic error bias 
Standard deviation 
Degree of freedom 

tcalc 
tcrit 

0.001 
0.104 

27 
0.189 
2.052 

0.023 
0.048 

27 
1.202 
2.052 

 

The PLS models showed sensitivity in 
numeric values of 0.09% (v/v). The inverse of 
the analytical sensitivity value, shown in 
Table 2, more clearly evaluated because of 

the direct relationship with the 
concentration. According to this value, the 
PLS models are able to distinguish differences 
among samples with concentration in the 
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range of 0.03% (v/v) for FAME 
biodiesel/diesel blends models. Regarding 
selectivity, the values found were 0.10 and 
0.03 for FAME and FAEE biodiesel from waste 
frying oil in diesel blends models, 
respectively. However, this selectivity value 
does not refer to the selectivity in its physical 
meaning, which is generally used in analytical 
chemistry. It means that 10% of the signal 
was used for quantification because it does 
not contain interference. 

 

4. Conclusion 

 

The methodologies developed for 
quantification of biodiesels content from 
waste frying oil in diesel blends was validated 
in the concentrations ranging from 1.00 to 
30.00% (v/v). Thus, using mid-infrared 
combined with multivariate calibration and 
following the recommendations of the ASTM 
E1655 standard, the proposed models 
became simpler than proposed by the ABNT 
NBR 15568, in other words, the selection of 
specific spectral regions is unnecessary, 
which leads to a simplification and time 
reduction in both analysis and processing. 
Furthermore, the methodologies can be 
useful for fast, non-destructive and low cost 
monitoring of biofuel quality control with 
respect to quantification of biodiesel in diesel 
blends. 
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