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Isolamento de Flavonoides de Dipteryx odorata por Cromatografia 
Líquida de Alta Eficiência 

Resumo: Dipteryx odorata (Aubl) Willd, família Fabaceae, é uma espécie nativa da 
floresta Amazônica, Brasil. O objetivo do trabalho foi isolar e identificar os flavonoides 
do endocarpo de D. odorata minimizando custos com solventes, tempo e resíduos. Seis 
flavonoides, 3',4',7-triidroxiflavona, 3',4',7-triidroxiflavanona, 3',4',6-triidroxiaurona, 
3',4',5,7-tetraidroxiflavona, 2',3,4,4'-tetraidroxichalcona e 2',4,4'-triidroxichalcona 
foram isolados. Os flavonoides 3',4',7-triidroxiflavona e 2',3,4,4'-tetraidroxichalcona 
foram identificados pela primeira vez nesta espécie. 

Palavras-chave: Cumaru; Fabaceae; CLAE. 

 

Abstract  

Dipteryx odorata (Aubl.) Willd, Fabaceae family, is a native species from the Amazon 
forest, Brazil.  The goal of the work was to isolate and identify the flavonoids in the 
endocarp from D. odorata in order to minimize costs with solvents, time and residues. 
Six flavonoids, 3’,4’,7-trihydroxyflavone, 3’,4’,7-trihydroxyflavanone, 3’,4’,6-
trihydroxyaurone, 3’,4’,5,7-tetrahydroxyflavone, 2’,3,4,4’-tetrahydroxychalcone and 
2’,4,4’-trihydroxychalcone were isolated. The flavonoids 3’,4’,7-trihydroxyflavoneand 
2’,3,4,4’-tetrahydroxychalcone were identified for the first time in this species. 
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1. Introduction 

 

Dipteryx odorata (Aubl.) Willd. (syn. 
Coumarouna odorata Aubl); Fabacea family, 
commonly known as “tonka bean” tree or 

locally as “cumaru”, is a high arboreal species 
native to the Amazon area.1 Due to its high 
content of coumarin, the plant’s seeds have 
significant commercial value and are widely 
used in the perfumery, cigarettes and 
cosmetics industries.1,2  
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Popularly, it is used to aid in the 
treatment of ulcers, ear infections, 
respiratory and cardiac disorders.1 The seeds 
are characterized by acaricidal activity,3 
which revealed anti-carcinogenic effects, 
especially against breast cancer, potential 
phytotoxicity4 and cancer chemopreventive.5 

Previous phytochemical investigations of 
this plant resulted in the isolation of 
coumarins,2,6 cassanediterpenoids,5,7 

isoflavonoids,8-10 isoflavolignans,5fatty acids4  
and lupane triterpenoids.11 Isoflavones, 
chalcones and aurones represents some 
flavonoids that have already been isolated 
from different parts of this species. From the 
endocarp, only diterpenoids were isolated 
but the presence of flavonoids has not been 
investigated in this plant structure. 

The flavonoids are secondary metabolites, 
having a C6-C3-C6 carbon framework. 
Variations in the basic carbon skeleton and 
the oxidation state lead to main classes of 
flavonoids: chalcones, aurones, flavanones, 
dihydroflavonols, flavones, flavonols, 
isoflavones, flavan-3-ols and 
anthocyanidins.12 Flavonoids receive 
considerable attention in the literature, 
especially for being awarded several 
biological activities to this class, such as 
antioxidant activity, anti-inflammatory, 
antitumor and antiviral.13-15 

The high performance liquid 
chromatography (HPLC) is the most wide 
spread technique and it is used for analytical 
scale separation of flavonoids. The major 
advantage over others chromatographic 
methods is that it provides high resolution 
and sensitive quantitative analysis in a single 
operation.16 When the goal is to obtain the 
compounds individually isolated with 
sufficient purity and quantity for 
identification purposes, the preparative scale 
separation of flavonoids by classic liquid 
chromatography is most commonly used. 
However, it is a time consuming and 
laborious process17 and uses large volume of 
solvents, causing an expressive 
environmental impact and economic 
demand.  

An alternative involves the optimization of 
chromatographic methods to reduce these 
consequences. Thus, the objective of this 
work was the isolation and the identification 
of flavonoids from the endocarp minimizing 
costs, time and solvent’s residues. 

 

2. Material and Methods 

 

2.1. Plant Material and Sample 
Preparation 

 

Dipteryx odorata fruits were collected at 
Ducke Reserve – National Institute for 
Amazonian Research, Manaus, AM, Brazil. 
The voucher specimen (INPA00143012) is 
deposited in the Herbário INPA.  

The fruits were dried at room 
temperature and broken up, separating the 
endocarp material from the seed. The 
endocarp (3000 g) was grinded in a ball mill 
and extracted with petroleum ether (5 L) by 
maceration for 6 days. The solid residue of 
the maceration was dried at room 
temperature and extracted by maceration for 
6 days, this time with ethyl ether (5 L). 

Dried ethyl ether extract (15 g) was 
fractionated by ultraturrax agitation and 
filtration under vacuum on sintered glass 
funnel plate, with n-hexane, 
dichloromethane, ethyl acetate and 
methanol in order of increasing polarity. 
From the dried fractions 1 mg was separated 
and re-suspended with 1 mL of 
methanol:water (1:1), and centrifuged. The 
supernatant was analyzed by HPLC-PDA.  

 

2.2. Chromatographic conditions for 
flavonoid separation 

 

The HPLC analysis was carried out on a 
Waters Alliance® 2695 system (Waters, MA, 
USA) equipped with an auto sampler, PDA 
detector (2996, Waters, MA, USA). The 
chromatographic separation was optimized 
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using reverse phase column (C18, YMC 250 x 
4.6 mm, with a particle size of 5 μm) at a 
temperature of 45 °C. The mobile phase 
consisted of water:acetic acid 98:2 (A) and 
acetonitrile:acetic acid 98:2 (B). The flow rate 
was 1.3 mL.min-1 and the gradient program 
was 0–6 min, 20–40 % B; 6–12 min, 40–50 % 
B; 12–14 min, 20–20 % B. The PDA detection 
wavelengths were set at 200 nm and 600 nm. 

 

2.3. Isolation and strutural 
characterization of the substances 

 

The flavonoids separation was performed 
by HPLC analytical scale using a reverse phase 
column (C18, YMC 250 x 4.6 mm, with 5 μm 
particle) and  the  isolation was performed 
through the automated collection at the 
detector output, using a selector valve 
channels (RV500-104/550-104, Rheodyne®) 
as a fraction collector. The valve was 
programmed to collect one flavonoid through 
each channel according to its retention time. 
In order to increase the amount of each 
isolated flavonoid, successive injections and 
collections were performed automatically. 

Isolated flavonoids were dried by rotary 
evaporator and their structures were 
determined by interpretation of spectral 
data, mainly the one furnished by 13C NMR 
and 1H NMR (1D and 2D) and ESI-MS, 
including methyl derivatives prepared by 
reaction with diazomethane to confirm the 
structures. The purity of the isolated 
compounds was evaluated by HPLC-PDA. 

 

2.4. Nuclear Magnetic Resonance 
Spectrometry Conditions 

 

The spectral data was carried out on a 
Bruker AVANCE (operating in 499.80 MHz 
and 125.69 MHz to 1H and 13C, respectively). 
The chemical shifts (δH e δC in ppm) were 
referenced based on the residual values of 
the corresponding solvent MeOD used (δH 
3.31 andδC 49.15 ppm). Coupling constants (J) 

were reported in Hz. Heteronuclear spectra 
2D HSQC (1H-13C-COSY-1JCH) and HMBC (1H-
13C-COSY-nJCH, n=2 and n=3) were acquired 
with 8 transitions/128 increments and 4 
transitions/128 increments respectively. For 
homonuclear spectra 2D 1H-1H-COSY spectral 
widths of 5000 Hz in both dimensions and the 
normal number of transitions were used. 

 

2.5. UPLC-Mass Spectrometry Conditions 

 

MS spectra was carried out on a Waters 
Acquity UPLC system (Waters, MA, USA) 
equipped with an auto sampler and 
connected to the mass spectrometer Q-TOF 
Synapt detector (Waters, MA, USA) by 
electron spray ionization (ESI) or with direct 
infusion on mass spectrometer. The isolation 
was done on a reverse phase column (C18, 
ACQUITY UPLC BEH 150 x 2.1 mm and 1.7 
mM) at a temperature of 45 ºC. The mobile 
phase consisted of acetonitrile (A) and 0.1% 
formic acid in water (B). The flow rate was  
0.35 mL.min-1 and the gradient program was: 
0-5 min, 90-85 % B; 5-10.5 min, 85-81 % B; 
10.5-11 min, 81-80 % B; 11-19 min, 80-30 % 
B; 19-25 min, 30-40 % B; 25-26 min, 40-90 % 
B; 26-30 min, 90-90 % B. 

Mass spectrometer was operated in 
positive mode, analyzer mode V, with 
capillary voltage, cone voltage and extraction 
cone voltage set to 3000, 25 and 4000 V 
respectively. The desolvatation gas flow rate 
was set to 750 L/h at a temperature of 500 ºC 
and the source temperature was set to 120 
°C. 

 

2.6. Derivatization of isolated flavonoids 

 

Flavonoids isolated from the D. odorata 
were subjected to reaction with 
diazomethane. The diazomethane was 
synthesized from the reaction of potassium 
hydroxide with nitrosomethylurea.18
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3. Results 

 

3.1. Fractionation of the extract 

 

The crude extract of the D. odorata 
endocarp was fractionated with organic 

solvents of different polarities: n-hexane, 
dichloromethane, ethyl acetate and 
methanol. The four extracts were analyzed by 
high performance liquid chromatography in 
reversed phase column with photodiode 
array detector. The chromatogram was 
reported at λ 253 nm (Figure 1). 

 

 

Figure 1. Chromatogram of the D. odorata endocarp crude extract, n-hexane (n-C6H12), 
dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and methanol (MeOH) fractions. Injection 

volume: 50 µL; concentration of the crude extract and fractions: 1 mg.mL-1 

 

The crude, n-hexane and dichloromethane 
extracts showed one major peak at 7.8 min, 
characterized as coumarin (1) by analysis of 
accurated mass spectrum. The ethyl acetate 
extract did not reveal the presence of 
coumarin (1) and showed a higher 
concentration of flavonoids than the other 
extracts. For that reason it was submitted to 
HPLC separation and purification/collection 
of these components. 

 

3.2. Optimization of separation and 
collection of compounds present in the 
fraction of ethyl acetate 

 

The chromatographic separation was 
optimized in order to minimize the running 
time and get a good chromatographic 

resolution, minimizing the time and the 
solvent   spent in the isolation without losing 
the quality and purity of the final product.  

The isolation of the flavonoids from D. 
odorata involved the use of a HPLC analytical 
scale system connected to the selector valve 
channels Rheodyne® in the output of the 
detector (Figure 2). Successive injections and 
collections were performed to obtain the 
flavonoids isolated in quantity and purity 
appropriated to achieve good quality spectra 
and for the preparation of derivatives when 
necessary. The separation of flavonoids was 
monitored by a photodiode array detector 
(PDA) at λ 253 nm.  

Each of the valve channels was 
programmed to open and close according to 
the retention time of each substance of 
interest. The valve has six channels, five 
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channels were used for flavonoid collection 
and one channel for waste, thus five 
flavonoids were collected at each injection. 
For instance, at the beginning of the injection 
the valve output is selected on channel 1, 
where is the waste. In 5.3 minutes the elution 
of flavonoid 2 starts, then the valve change 

the output to channel 2, where is the 
reservoir flavonoid 2. In 5.5 minutes when 
the flavonoid finished eluting, the valve 
returns to the channel 1, and so on until the 
end of the process. Each flavonoid was 
collected by a different channel reducing the 
contamination. 

 

 

Figure 2. Flavonoids collection schema. Channel 1: waste reservoir; channel 2-5: flavonoid 2-5 
reservoir; channel 6: flavonoid 6 or 7 (Source: own file) 

 

From the ethyl acetate extract (40,6 mg) 
of the D. odorata were isolated the 
flavonoids 2 (1,2 mg, purity 93 %), 3 (1,3 mg, 
purity 90 %), 4 (1,5 mg, purity 96 %), 5 (1,0 
mg, purity 94 %), 6 (0,9 mg, purity 96 %) and 
7 (0,8 mg, purity 98 %) (Figure 3) with 
sufficient purity and quantity for structural 
elucidation. The flavonoids 2 and 6 were 
identified for the first time in this species. 
The methodology has proven effective in the 
isolation of flavonoids along with economic 

and environmental viability, therefore 
spending only 10 days using high 
performance liquid chromatograph and only 
6.9 L of acetonitrile, 370 mL of acetic acid and 
11 L of water. It is important to notice that 
automatic injection and collection were used, 
eliminating the full time work of the analyst 
and enabling the application of this 
methodology overnight, and for that not 
changing the laboratory routine. 
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Figure 3. Structures of seven substances isolated from the D. odorata 

 

3.3. Identification of the separated peaks 

 

The structures of the isolated flavonoids 
were determined by interpretation of 
spectral data, specially the one furnished by 
13C NMR and 1H NMR (1D and 2D), ESI-MS 
and UV, including of methyl derivatives 
prepared by reaction with diazomethane to 
confirm the structures. 

Compound 1 was identified by UV 

(max=270 nm) and ESI-HRMS spectral data. 
The ESI-HRMS (positive mode) showed peaks 
at m/z 147.0834 and 103.0997, attributed to 
protonated molecular ion ([M+H]+, calc m/z 
147.0446) and elimination of CO2 by 
protonated molecular ion ([M+H-CO2]

+, m/z 
103.0548). These spectral data allowed the 
identification of the compound 1 as 
coumarin. 

Compound 2. UV max: 253, 342 nm.1H-
NMR (MeOH-d4, 500 MHz) δH ppm: 6.67 (1H, 
s, H-3), 8.00 (1H, d, J = 8.8 Hz, H-5), 6.96 (1H, 
d, J = 8.8 Hz, H-6), 7.00 (1H,br s, H-8), 7.43 
(1H, brs, H-2’), 6.94 (1H, d, J = 8.1 Hz, H-5’), 
7.44 (1H, d, J = 8.1 Hz, H-6’). 13C-NMR 
(MeOH-d4, 125 MHz) δC ppm: 164.67 (C-2), 
103.76 (C-3), 178.89 (C-4), 126.35 (C-5), 
115.40 (C-6), 163.46 (C-7), 102.08 (C-8), 
158.24 (C-9), 115.81 (C-10), 122.56 (C-1’), 

112.75 (C-2’), 145.63 (C-3’), 149.40 (C-4’), 
114.89 (C-5’), 118.82 (C-6’). Comparison of 
these NMR spectral data with values 
described in the literature19 allowed the 
identification of the compound 2 as 3’,4’,7-
trihydroxyflavone. ESI-HRMS (positive mode) 
revealed peaks at m/z 271.0662 253.0787, 
225.0811, 197.0809, 161.0441, 137.0380, 
135.0627 (Figure 4). 

Compound 3. UV max: 277, 311 nm.1H-
NMR (MeOH-d4, 500 MHz) δH ppm: 5.34 (1H, 
dd, J = 12.9, 2.8 Hz, H-2 - axial position), 2.71 
(1H, dd, J = 17.0, 2.8 Hz, H-3a – equatorial 
position), 3.03 (1H, dd, J = 17.0, 12.9 Hz, H-3b 
– axial position), 7.75 (1H, d, J = 8.8 Hz, H-5), 
6.52 (1H, d, J = 8.8 Hz, H-6), 6.38 (1H, s, H-8), 
6.95 (1H, s, H-2’), 6.81 (1H, d, J = 8.2 Hz, H-
5’), 6.82 (1H, d, J = 8.2 Hz, H-6’). 13C-NMR 
(MeOH-d4, 125 MHz) δC ppm: 79.68 (C-2), 
43.63 (C-3), 192.14 (C-4), 128.45 (C-5), 110.33 
(C-6), 165.41 (C-7), 102.40 (C-8), 164.14 (C-9), 
113.56 (C-10), 130.62 (C-1’), 113.27 (C-2’), 
145.09 (C-3’), 145.43 (C-4’), 114.82 (C-5’), 
117.82 (C-6’). Comparison of these NMR 
spectral data with values described in the 
literature20 allowed the identification of the 
compound 3 as 3’,4’,7-trihydroxyflavanone 
(butin). ESI-HRMS (positive mode) revealed 
peaks at m/z 273.0901, 255.0872, 227.0918, 
163.0550, 137.0423 (Figure 5). 
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Compound 4. UV max: 395 nm.1H-NMR 
(MeOH-d4, 400 MHz) δH ppm: 7.63 (1H, d, J = 
8.00 Hz, H-4), 6.73 (1H, d, J = 8.00 Hz, H-5), 
6.73 (1H, H-7), 6.73 (1H, d, H-10), 7.55 (1H, s, 
H-2’), 6.87 (1H, d, J = 8.00 Hz, H-5’), 7.26 (1H, 
d, J = 8.00 Hz, H-6’). 13C-NMR (MeOH-d4, 100 
MHz) δC ppm: 146.29 (C-2), 183.07 (C-3), 
125.45 (C-4), 113.29 (C-5), 168.40 (C-6), 97.97 
(C-7), 166.98 (C-8), 113.44 (C-9), 112.71 (C-
10), 124.11 (C-1’), 117.52 (C-2’), 145.34 (C-
3’), 148.01 (C-4’), 115.27 (C-5’), 125.01 (CH-
6’). Comparison of these NMR spectraldata 
with values described in the literature21 
allowed the identification of the  compound 4 
as 3’,4’,7-trihydroxyaurone (sulfuretin). ESI-
HRMS (positive mode) revealed peaks at m/z 
271.0783, 253.0670, 225.0701, 215.0865, 
197.0757, 137.0380 (Figure 6). 

Compound 5. UV max: 252, 348 nm.1H-
NMR (MeOH-d4, 500 MHz) δH ppm: 6.57 (1H, 
s, H-3), 6.23 (1H, s, H-6), 6.47 (1H, s, H-8), 
7.41 (2H, sl, H-2’/H-6’), 6.93 (1H, sl, H-5’). 
13C-NMR (MeOH-d4, 125 MHz) δC ppm: 
164.80 (C-2), 102.46 (CH-3), 182.47 (C-4), 
161.80 (C-5), 98.81 (C-6), 93.66 (C-8), 158.03 
(C-9), 103.86 (C-10), 122.27 (C-1’), 112.78 (C-
2’), 145.67 (C-3’), 149.64 (C-4’), 115.41 (C-5’), 
118.90 (C-6’). Comparison of these NMR 
spectraldata with values described in the 
literature22  allowed the identification of 
compound 5 as 3’,4’,5,7-trihydroxyflavone 
(luteolin). ESI-HRMS (positive mode) revealed 
peaks at m/z 269.0679, 241.0630, 161.0394, 
135.0584 (Figure 4). 

Compound 6. UV max: 229, 379 nm.1H-
NMR (MeOH-d4, 500 MHz) δH ppm: 7.59 (1H, 
d, J = 14.8 Hz, H-α), 7.76 (1H, d, J = 14.8 Hz, 
H-β), 7.22 (1H, s, H-2), 6.86 (1H, d, J = 7.9 Hz, 
H-5), 7.15 (1H, d, J = 7.9 Hz, H-6), 6.32 (1H, s, 
H-3’), 6.45 (1H, d, J = 8.8 Hz, H-5’), 7.99 (1H, 
d, J = 8.8 Hz, H-6’). 13C-NMR (MeOH-d4, 125 
MHz) δC ppm: 192.05 (C=O), 116.86 (C-α), 
144.70 (C-β), 126.98 (C-1), 114.37 (C-2), 
145.48 (C-3), 148.61 (C-4), 115.24 (C-5), 
122.29 (C-6), 113.24 (C-1’), 165.17 (C-2’), 
102.46 (C-3’), 166.12 (C-4’), 107.86 (C-5’), 
131.92 (C-6’). Comparison of these NMR 
spectraldata with values described in the 
literature20 allowed the identification of 

compound 6 as 2’,3,4,4’-
tetrahydroxychalcone (butein). ESI-HRMS 
(positive mode) revealed peaks at m/z 
273.1023, 255.0872, 227.0973, 163.0550, 
137.0423 (Figure 7). 

Compound 7. UV max: 229, 370 nm.1H-
NMR (MeOH-d4, 400 MHz) δH ppm: 7.65 (1H, 
d, J = 15.0 Hz, H-α), 7.81 (1H, d, J = 15.0 Hz, 
H-β), 7.66 (2H, d, J = 8.2 Hz, H-2/H-6), 6.87 
(2H, d, J = 8.2 Hz, H-3/H-5), 6.31 (1H, s, H-3’), 
6.44 (1H, d, J = 8.2 Hz,  H-5’), 8.01 (1H, d, J = 
8.2 Hz, H-6’). 13C-NMR (MeOH-d4, 100 MHz) 
δC ppm: 192.14 (C=O), 116.92 (C-α), 144.30 
(C-β),  130.47 (C-2/C-6), 115.54 (C-3/C-5), 
160.19 (C-4), 154.41 (C-2’), 102.41 (C-3’), 
165.01 (C-4’), 107.78 (C-5’), 132.00 (C-6’). 
Comparison of these NMR spectraldata with 
values described in the literature23  allowed 
the identification of compound 7 as 2’,3,4’-
tetrahydroxychalcone (isoliquiritigenin). ESI-
HRMS (positive mode) revealed peaks at m/z 
257.0919, 239.0935, 211.0967, 147.0587, 
137.0380 (Figure 7). 

The proposed fragmentation mechanisms 
to justify the principals peaks observed in the 
ESI-HRMS of all flavonoids were summarized 
in the Figures 4 (compounds 2 and 5), 5 
(compound 3), 6 (compound 4) and 7 
(compounds 6 and 7). The similarity revealed 
by the fragmentations reaction of these 
flavonoids, such as retro-Diels-Alder reaction, 
was also used to define the number of 
hydroxyl groups present on rings A and B 
(Figures 4 to 7). Through the 1D and 2D NMR 
spectral data involving comparison with the 
literature was possible to postulate the 
substitution pattern of each ring. Ultraviolet 
spectra were also useful in the structural 
classification of the compounds, contributing 
to the identification of the flavonoids class. 

The compounds 3 and 6 showed very 
similar fragmentation and the same 
protonated molecular ion [M+H]+. As 
expected, the UV absorption of compound 6 
revealed expressive difference when 
compared with the compound 3, this 
information suggested that these compounds 
are the isomers chalcone and flavanone, 
respectively. The ionization energy used in 
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the mass spectra can lead to interconversion 
between these isomers explaining the 
similarity between the mass spectra.  

Compounds 2, 5 (Figure 4) and 4 (Figure 6) 
revealed the fragments [M+H-H2O]+, [M+H-

H2O-CO]+ and [M+H-H2O-2CO]+. Compounds 6 
and 7 (Figure 7) revealed the fragments 
[M+H-H2O]+ and [M+H-H2O-CO]+ and 
compound 3 (Figure 5) revealed the 
fragments [M+H-H2O]+, [M+H-CO]+. 

 

 

 

O

OH

HO

OH

OH

O

O

HO

OH2

O
O

O

HO

O

O

O

HO

H2O

CO

OHO

C
OH

OH2

OH HO O

R
R

5a/2a C8H7O2
+

m/z calc.: 135.0441
m/z exp. (5):135.0584
m/z exp. (2): 135.0627

 5c/2c C9H5O3
+

m/z calc.: 161.0233
m/z exp. (5c): 161.0394
m/z exp. (2c): 161.0441

5+H+ R=OH C15H11O6
+

m/z calc.: 287.0550
m/z exp.: non detected
2+H+ R=H C15H11O5

+

m/z calc.: 271.0601
m/z exp.:271.0662

5d R=OH C15H9O5
+

m/z calc.: 269.0444
m/z exp.:269.0679
2d R=H C15H9O4

+

m/z calc.: 253.0495
m/z exp.:253.0787

5e R=OH C14H9O4
+

m/z calc.: 241.0495
m/z exp.: 241.0630
2e R=H C14H9O3

+

m/z calc.: 225.0546
m/z exp.: 225.0811

2f R=H C13H9O2
+

m/z calc.: 197.0597
m/z exp.: 197.0809

5b R=OH C7H5O4
+

m/z calc.: 153.0182
m/z exp.: 153.0298
2b R=H C7H5O3

+

m/z calc.:137.0233
m/z exp.: 137.0380

R

R

R
RH CO

O

O

HO

OH

OH

5 R=OH C15H10O6
m/z calc.: 286.0477
2 R=H C15H10O5
m/z calc.:  270.0528

H+R

O

OH

C
C

C
HO

c

 

Figure 4. Mass spectra in positive mode of compound 2 (a) and 5 (b) and proposed MS 
fragmentation pathway(c) 
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Figure 5. Mass spectra in positive mode of compound 3 (a) and proposed MS fragmentation 
pathway (b) 
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Figure 6. Mass spectra in positive mode of compound 4 (a) and proposed MS fragmentation 
pathway (b) 
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Figure 7. Mass spectra in positive mode of compound 6 (a) and 7 (b) and proposed MS 
fragmentation pathway (c) 
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trimethoxy-5-hidroxyflavone (5M) and 3,4,4'-
trimethoxy-2'-hidroxychalcone (6M) the 
addition of 42 mass units confirmed the 
existence of three hydroxyl groups located at 
positions compatibles with conditions to 
methylation and one involved in 
intramolecular hydrogen bond that do not 
react with diazomethane. Analogous result 
was observed in the spectrum of 4,4'-
trimethoxy-2'-hidroxychalcone (7M) the 
addition of 28 mass units confirmed the 
existence of two hydroxyl groups at positions 
to methylation and one involved in 
intramolecular hydrogen bond. Spectra of 
derivatives confirmed unequivocally the 
structures of the isolated flavonoids. 

 

4. Conclusion 

 

Flavonoids 2, 3, 4, 5, 6 and 7 were isolated 
from D. odorata with sufficient purity and 
quantity for structural elucidation through 
interpretation of UV, NMR and MS spectra 
data. The flavonoids 2 and 6 were identified 
for the first time in this species. The 
methodology is effective in the isolation of 
flavonoids and viable both economically and 
environmentally. 
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