

Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

Folha-

Gerência de Metrologia

Certificado de Calibração № 124884

01/04

LABORATÓRIO ISAAC NEWTON

REDE BRASILEIRA DE CALIBRAÇÃO LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE

Cliente: CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

Endereço: Av. Brasil, 1731, Funcionários , 30140-002 Belo Horizonte, MG, Brasil

Guia de autorização de serviços №: 63712

Objeto: BALANÇA, id.: BB 01, tipo: eletrônica, marca: BEL ENGINEERING, modelo: MARK K30, número de série: 00516501, faixa nominal: 30000 g, resolução: 0,1 g

Natureza do trabalho: CALIBRAÇÃO segundo Procedimento Técnico CETEC SENAI PT 1702 (V. 1.0)

Data da calibração: 25.04.2013

Data da emissão: 02.05.2013

Cláudio Gomes da Costa Engo. Mecânico CREA-MG 72437/D Responsável pelo Laboratório Shalon Alves Pontes Gerência de Metrologia

Os resultados apresentados referem-se exclusivamente ao instrumento descrito como Objeto

Nas situações aplicáveis, o arredondamento dos números deste certificado foi realizado segundo as prescrições da NBR 5891/1977

O CETEC SENAI autoriza a reprodução deste certificado, desde que qualquer cópia sempre apresente seu conteúdo integral

Este certificado atende aos requisitos de acreditação da CGCRE, que avaliou a competência

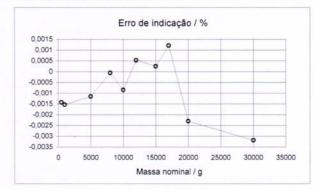
do Laboratório Isaac Newton e comprovou a rastreabilidade dos resultados a padrões nacionais de medida

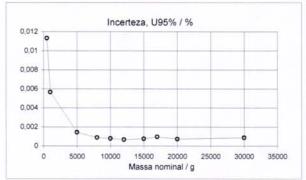
Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

Gerência de Metrologia

Certificado de Calibração № 124884

1 Resultados da calibração


1.1 Medições


Valor de referência / g			Leit	uras no instrum	nento de pesag	em / g	
nominal	aplicado	R1	R2	R3	R4	R5	média
500	500,0071	500,0	500,0	500,0	500,0	500,0	500,0
1000	1000,0153	1000,0	1000,0	1000,0	1000,0	1000,0	1000,0
5000	5000,0777	5000,1	5000,0	5000,0	5000,0	5000,0	5000,0
8000	8000,1244	8000,2	8000,1	8000,1	8000,1	8000,1	8000,1
10000	10000,1454	10000,1	10000,1	10000,0	10000,1	10000,0	10000,1
12000	12000,1769	12000,3	12000,3	12000,2	12000,2	12000,2	12000,2
15000	15000,2231	15000,2	15000,4	15000,3	15000,2	15000,2	15000,3
17000	17000,2545	17000,6	17000,4	17000,6	17000,3	17000,4	17000,5
20000	20000,3005	20000,0	19999,8	19999,9	19999,8	19999,7	19999,8
30000	30000,4558	29999,5	29999,7	29999,7	29999,3	29999,3	29999,5

1.2 Erros e incertezas

Valor de r	eferência / g	Erro de	indicação	Incertezas			
nominal	aplicado	/ g	/ %	Neff	k	U95% / g	U95% / %
500	500,0071	0,0	0,00	infinito	1,96	0,1	0,011
1000	1000,0153	0,0	0,00	infinito	1,96	0,1	0,0057
5000	5000,0777	-0,1	0,00	3,70E+01	2,03	0,1	0,0014
8000	8000,1244	0,0	0,00	3,70E+01	2,03	0,1	0,00089
10000	10000,1454	-0,1	0,00	2,20E+01	2,07	0,1	0,00079
12000	12000,1769	0,1	0,00	2,20E+01	2,07	0,1	0,00066
15000	15000,2231	0,0	0,00	9,00E+00	2,26	0,1	0,00075
17000	17000,2545	0,2	0,00	6,00E+00	2,45	0,2	0,00096
20000	20000,3005	-0,5	0,00	6,00E+00	2,45	0,1	0,00072
30000	30000,4558	-1,0	0,00	4,00E+00	2,78	0,3	0,00087

1.2.1 Diagramas dos erros e incertezas

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL CETEC SENAI

Av. José Cândido da Silveira, 2000 - Horto
31035-536 - Belo Horizonte - MG - Brasil
Telefone: (31) 3489-2144 - Fax: (31) 3489-2191
e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

Folha-03/04 Gerência de Metrologia

Certificado de Calibração № 124884

1.3 Influência do carregamento excêntrico

Valor de referência = 10000,1454

1.3.1 Medições com carga excêntrica

Posição	Leitura / g
Centro	10000,0
Posição 1	10000,3
Posição 2	10000,2
Posição 3	9999,2
Posição 4	10000,2

1.3.2 Efeito do carregamento excêntrico sobre os resultados, quando aplicável

Valor de r	eferência / g	contrib. carga excêntrica /		
nominal	aplicado	ao erro ind.	à incerteza	
500	500,0071	5,0E-02	1,4E-02	
1000	1000,0153	9,0E-02	2,7E-02	
5000	5000,0777	4,7E-01	1,4E-01	
8000	8000,1244	7,5E-01	2,2E-01	
10000	10000,1454	9,4E-01	2,7E-01	
12000	12000,1769	1,1E+00	3,3E-01	
15000	15000,2231	1,4E+00	4,1E-01	
17000	17000,2545	1,6E+00	4,6E-01	
20000	20000,3005	1,9E+00	5,4E-01	
30000	30000,4558	2,8E+00	8,2E-01	

1.4 Incertezas combinadas das massas empregadas na calibração

Valor de re	eferência / g	u(ms)
nominal	aplicado	/ g
500	500,0071	1,90E-04
1000	1000,0153	3,50E-04
5000	5000,0777	1,70E-03
8000	8000,1244	2,74E-03
10000	10000,1454	3,30E-03
12000	12000,1769	3,99E-03
15000	15000,2231	5,00E-03
17000	17000,2545	5,69E-03
20000	20000,3005	3,30E-03
30000	30000,4558	6,76E-03

2 Padrões utilizados na calibração

Id. STF	STF 702.00	715.00	716.00
Função	padrão de trabalho	padrão de trabalho	padrão de trabalho
Tipo	col. pesos-padrão, cl. F1	peso-padrão, cl. F1	peso-padrão, cl. F1
Marca	Sartorius / KN Waagen	fabr. NGT Mec. Ltda.	fabr. NGT Mec. Ltda.
Modelo	YCS01-653-00 / YCW713-00) = :
Num.série	60328936 / 11128002	-	-
Data cal.	13.12.2012	03.11.2011	03.11.2011
Certificado	124664	123945	123944
Órgão cal.	CETEC SENAI	CETEC	CETEC
Rastreab.	INMETRO-Brasil	INMETRO-Brasil	INMETRO-Brasil

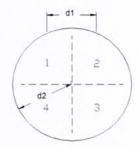
Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

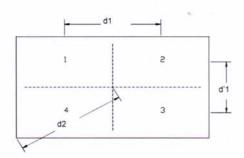
Folha-

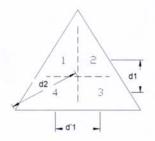
04/04

Gerência de Metrologia

Certificado de Calibração № 124884


3 Condições operacionais


- 3.1 Local: SECLAB Sedimentometria CLIENTE
- 3.2 Temperatura local durante a calibração / °C: 21,9
- 3.3 Umidade relativa do ar / %: 57,6
- 3.4 Pressão barométrica / Pa: 92241
- 3.5 Operação: Hugo Fernandes Campos e Jonathan Lopes de Souza
- 3.6 Forma do prato de pesagem: retangular
- 3.7 Massa específica do ar local, durante a calibração / kg/m3: 1,083
- 3.8 Posição do padrão no prato de pesagem no carregamento excêntrico / mm: d1 = 180; d2 = 210


4 Observações

- 4.1 As incertezas padrão combinadas dos padrões são a soma linear das incertezas dos componentes. É considerado o pior caso, que ocorre quando existe correlação entre as massas medidas dos componentes (Myklebust et al., OIML Bull. XXXVIII(2), Apr.97).
- 4.2 A incerteza expandida de medição relatada (U95%) é a incerteza padrão combinada, multiplicada por um fator de abrangência k, o qual, para uma distribuição t com Neff graus de liberdade efetivos, corresponde a uma probabilidade de abrangência de 95%.
- 4.3 A incerteza padrão combinada de medição foi determinada segundo as prescrições do ISO GUM (3a. Ed. Bras. 2003) e a publicação EA-4/02, considerando-se os seguintes componentes: resolução e sensibilidade (inclui repetibilidade e padrão).
- 4.4 Massa específica e incerteza estimada dos materiais dos pesos-padrão, em kg/m3: 1 g 10 kg: aço inox (8000±140), 10 mg 500 mg: Ni (8600±170); 1 mg 5 mg: Al (2700±130)
- 4.5 A incerteza expandida apresentada não incorpora a influência do erro de indicação e do carregamento excêntrico. O erro de indicação apresentado não incorpora a influência do carregamento excêntrico.
- 4.6 A influência do carregamento excêntrico sobre o erro de indicação nos pontos além do ponto medido foi estimada com o emprego de um modelo linear; a correspondente incerteza foi estimada considerando uma distribuição retangular do erro.

4.7 Diagramas de carregamento excêntrico:

Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

Gerência de Metrologia

Certificado de Calibração № 124885

01/04

LABORATÓRIO ISAAC NEWTON

REDE BRASILEIRA DE CALIBRAÇÃO LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE

Cliente: CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS Endereço: Av. Brasil, 1731, Funcionários , 30140-002 Belo Horizonte, MG, Brasil

Guia de autorização de serviços №: 63712

Objeto: BALANÇA, id.: BSA 01, tipo: eletrônica, marca: MARTE, modelo: AS 2000C, número de série: 293648, faixa nominal: 2000 g, resolução: 0,01 g

Natureza do trabalho: CALIBRAÇÃO segundo Procedimento Técnico CETEC SENAI PT 1702 (V. 1.0)

Data da calibração: 25.04.2013

Data da emissão: 02.05.2013

Cláudio Gomes da Costa Engo. Mecânico CREA-MG 72437/D Responsável pelo Laboratório Shalon Alves Pontes Gerência de Metrologia

Os resultados apresentados referem-se exclusivamente ao instrumento descrito como Objeto

Nas situações aplicáveis, o arredondamento dos números deste certificado foi realizado segundo as prescrições da NBR 5891/1977

O CETEC SENAI autoriza a reprodução deste certificado, desde que qualquer cópia sempre apresente seu conteúdo integral

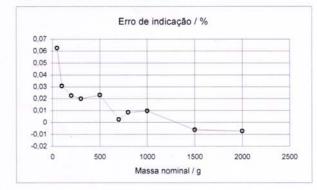
Este certificado atende aos requisitos de acreditação da CGCRE, que avaliou a competência
do Laboratório Isaac Newton e comprovou a rastreabilidade dos resultados a padrões nacionais de medida

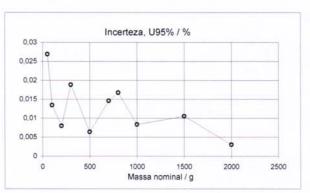
Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fierng.com.br - www.fierng.com.br

-Folha---02/04 Gerência de Metrologia

Certificado de Calibração № 124885

Resultados da calibração


1.1 Medições


Valor de re	eferência / g		Leiti	uras no instrum	ento de pesag	em / g	
nominal	aplicado	R1	R2	R3	R4	R5	média
50	50,00074	50,04	50,04	50,02	50,02	50,04	50,03
100	100,00136	100,03	100,03	100,02	100,05	100,03	100,03
200	200,00289	200,04	200,05	200,04	200,04	200,07	200,05
300	300,00425	300,12	300,05	300,01	300,04	300,10	300,06
500	500,0072	500,10	500,12	500,16	500,13	500,10	500,12
700	700,0101	700,16	700,03	699,95	700,03	699,97	700,03
800	800,0115	800,15	799,89	800,11	800,11	800,14	800,08
1000	1000,0155	1000,22	1000,08	1000,11	1000,04	1000,11	1000,1
1500	1500,0227	1500,03	1499,77	1500,08	1499,92	1499,85	1499,93
2000	2000,0318	1999,91	1999,83	1999,94	1999,91	1999,84	1999,89

1.2 Erros e incertezas

Valor de re	eferência / g	Erro de i	ndicação		In	certezas	
nominal	aplicado	/ g	/ %	Neff	k	U95% / g	U95% / %
50	50,00074	0,03	0,06	7,00E+00	2,36	0,01	0,027
100	100,00136	0,03	0,03	7,00E+00	2,36	0,01	0,013
200	200,00289	0,05	0,02	6,00E+00	2,45	0,02	0,0080
300	300,00425	0,06	0,02	4,00E+00	2,78	0,06	0,019
500	500,0072	0,11	0,02	4,00E+00	2,78	0,03	0,0064
700	700,0101	0,02	0,00	4,00E+00	2,78	0,10	0,015
800	800,0115	0,07	0,01	4,00E+00	2,78	0,13	0,017
1000	1000,0155	0,10	0,01	4,00E+00	2,78	0,08	0,0083
1500	1500,0227	-0,09	-0,01	4,00E+00	2,78	0,16	0,011
2000	2000,0318	-0,15	-0,01	4,00E+00	2,78	0,06	0,0030

1.2.1 Diagramas dos erros e incertezas

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL
CETEC SENAI

Av. José Cândido da Silveira, 2000 - Horto
31035-536 - Belo Horizonte - MG - Brasil
Telefone: (31) 3489-2144 - Fax: (31) 3489-2191
e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

-Folha-

03/04

Gerência de Metrologia

Certificado de Calibração № 124885

1.3 Influência do carregamento excêntrico

1.3.1 Medições com carga excêntrica

Valor de referência = 1000,0155

Posição	Leitura / g
Centro	1000,02
Posição 1	999,63
Posição 2	1001,39
Posição 3	1000,16
Posição 4	998,78

1.3.2 Efeito do carregamento excêntrico sobre os resultados, quando aplicável

Valor de r	eferência / g	contrib. carga excêntrica / g			
nominal	aplicado	ao erro ind.	à incerteza		
50	50,00074	1,1E-01	3,1E-02		
100	100,00136	2,2E-01	6,3E-02		
200	200,00289	4,3E-01	1,3E-01		
300	300,00425	6,5E-01	1,9E-01		
500	500,0072	1,1E+00	3,1E-01		
700	700,0101	1,5E+00	4,4E-01		
800	800,0115	1,7E+00	5,0E-01		
1000	1000,0155	2,2E+00	6,3E-01		
1500	1500,0227	3,3E+00	9,4E-01		
2000	2000,0318	4,4E+00	1,3E+00		

1.4 Incertezas combinadas das massas empregadas na calibração

Valor de re	eferência / g	u(ms)
nominal	aplicado	/ g
50	50,00074	2,20E-05
100	100,00136	3,40E-05
200	200,00289	6,70E-05
300	300,00425	1,01E-04
500	500,0072	1,90E-04
700	700,0101	2,57E-04
800	800,0115	2,91E-04
1000	1000,0155	3,50E-04
1500	1500,0227	5,40E-04
2000	2000,0318	6,90E-04

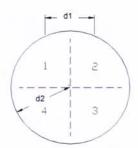
2 Padrões utilizados na calibração

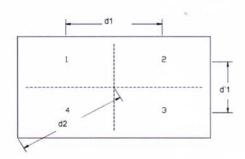
Id. STF	STF 702.00
Função	padrão de trabalho
Tipo	col. pesos-padrão, cl. F1
Marca	Sartorius / KN Waagen
Modelo	YCS01-653-00 / YCW713-00
Num.série	60328936 / 11128002
Data cal.	13.12.2012
Certificado	124664
Órgão cal.	CETEC SENAI
Rastreab.	INMETRO-Brasil

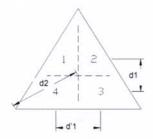
Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

—Folha—

Gerência de Metrologia


Certificado de Calibração № 124885


3 Condições operacionais


- 3.1 Local: SECLAB Sedimentometria CLIENTE
- 3.2 Temperatura local durante a calibração / °C: 22,2
- 3.3 Umidade relativa do ar / %: 56,4
- 3.4 Pressão barométrica / Pa: 92198
- 3.5 Operação: Hugo Fernandes Campos e Jonathan Lopes de Souza
- 3.6 Forma do prato de pesagem: circular
- 3.7 Massa específica do ar local, durante a calibração / kg/m3: 1,081
- 3.8 Posição do padrão no prato de pesagem no carregamento excêntrico / mm: d1 = 100; d2 = 120

4 Observações

- 4.1 As incertezas padrão combinadas dos padrões são a soma linear das incertezas dos componentes. É considerado o pior caso, que ocorre quando existe correlação entre as massas medidas dos componentes (Myklebust et al., OIML Bull. XXXVIII(2), Apr.97).
- 4.2 A incerteza expandida de medição relatada (U95%) é a incerteza padrão combinada, multiplicada por um fator de abrangência k, o qual, para uma distribuição t com Neff graus de liberdade efetivos, corresponde a uma probabilidade de abrangência de 95%.
- 4.3 A incerteza padrão combinada de medição foi determinada segundo as prescrições do ISO GUM (3a. Ed. Bras. 2003) e a publicação EA-4/02, considerando-se os seguintes componentes: resolução e sensibilidade (inclui repetibilidade e padrão).
- 4.4 Massa específica e incerteza estimada dos materiais dos pesos-padrão, em kg/m3: 1 g 10 kg: aço inox (8000±140), 10 mg 500 mg: Ni (8600±170); 1 mg 5 mg: Al (2700±130)
- 4.5 A incerteza expandida apresentada não incorpora a influência do erro de indicação e do carregamento excêntrico. O erro de indicação apresentado não incorpora a influência do carregamento excêntrico.
- 4.6 A influência do carregamento excêntrico sobre o erro de indicação nos pontos além do ponto medido foi estimada com o emprego de um modelo linear; a correspondente incerteza foi estimada considerando uma distribuição retangular do erro.
- 4.7 Diagramas de carregamento excêntrico:

Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

olha-

01/04

Gerência de Metrologia

Certificado de Calibração № 124887

LABORATÓRIO ISAAC NEWTON

REDE BRASILEIRA DE CALIBRAÇÃO LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE

Cliente: CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

Endereço: Av. Brasil, 1731, Funcionários , 30140-002 Belo Horizonte, MG, Brasil

Guia de autorização de serviços №: 63712

Objeto: BALANÇA, id.: BA 01, tipo: eletrônica, marca: SHIMADZU, modelo: AY220, número de série: D452201595, faixa nominal: 220 g, resolução: 0,0001 g

Natureza do trabalho: CALIBRAÇÃO segundo Procedimento Técnico CETEC SENAI PT 1702 (V. 1.0)

Data da calibração: 25.04.2013

Data da emissão: 02.05.2013

Engo. Mecânico CREA-MG 72437/D Responsável pelo Laboratório Shalon Alves Pontes Gerência de Metrologia

Os resultados apresentados referem-se exclusivamente ao instrumento descrito como Objeto

Nas situações aplicáveis, o arredondamento dos números deste certificado foi realizado segundo as prescrições da NBR 5891/1977

O CETEC SENAI autoriza a reprodução deste certificado, desde que qualquer cópia sempre apresente seu conteúdo integral

Este certificado atende aos requisitos de acreditação da CGCRE, que avaliou a competência

do Laboratório Isaac Newton e comprovou a rastreabilidade dos resultados a padrões nacionais de medida

Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenai@fiemg.com.br - www.fiemg.com.br

lha-

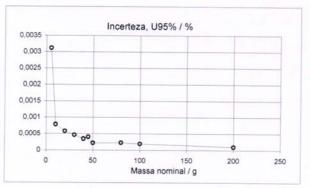
02/04

Gerência de Metrologia

Certificado de Calibração № 124887

1 Resultados da calibração


1.1 Medições


Valor de referência / g		Leituras no instrumento de pesagem / g					
nominal	aplicado	R1	R2	R3	R4	R5	média
5	5,00009	5,0002	5,0000	5,0002	5,0003	5,0001	5,0002
10	10,00015	10,0002	10,0002	10,0001	10,0002	10,0002	10,0002
20	20,00024	20,0001	20,0000	20,0001	19,9999	20,0000	20,0000
30	30,00039	29,9999	30,0001	30,0000	29,9999	29,9999	30,0000
40	40,00047	40,0000	39,9999	39,9998	39,9998	39,9999	39,9999
45	45,00056	45,0000	45,0000	44,9999	45,0000	44,9999	45,0000
50	50,00074	49,9999	49,9998	50,0000	49,9999	49,9999	49,9999
80	80,00113	79,9999	79,9997	79,9998	79,9998	79,9999	79,9998
100	100,00135	99,9998	99,9996	99,9999	99,9998	99,9996	99,9997
200	200,00287	199,9996	199,9996	199,9996	199,9995	199,9996	199,9996

1.2 Erros e incertezas

Valor de referência / g		Erro de indicação		Incertezas			
nominal	aplicado	/ g	1 %	Neff	k	U95% / g	U95% / %
5	5,00009	0,0001	0,0013	6,00E+00	2,45	0,0002	0,0031
10	10,00015	0,0000	0,0003	2,30E+01	2,07	0,0001	0,00078
20	20,00024	-0,0002	-0,0011	8,00E+00	2,31	0,0001	0,00058
30	30,00039	-0,0004	-0,0014	7,00E+00	2,36	0,0001	0,00046
40	40,00047	-0,0006	-0,0015	7,00E+00	2,36	0,0001	0,00034
45	45,00056	-0,0006	-0,0013	5,00E+00	2,57	0,0002	0,00040
50	50,00074	-0,0008	-0,0017	9,00E+00	2,26	0,0001	0,00022
80	80,00113	-0,0013	-0,0016	5,00E+00	2,57	0,0002	0,00023
100	100,00135	-0,0016	-0,0016	5,00E+00	2,57	0,0002	0,00019
200	200,00287	-0,0033	-0,0016	5,00E+00	2,57	0,0002	0,000097

1.2.1 Diagramas dos erros e incertezas

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL

CETEC SENAI

Av. José Cândido da Silveira, 2000 - Horto
31035-536 - Belo Horizonte - MG - Brasil
Telefone: (31) 3489-2144 - Fax: (31) 3489-2191
e-mail: cetecsenai@fiemg.com.br - www.flemg.com.br

Gerência de Metrologia

Certificado de Calibração № 124887

03/04

1.3 Influência do carregamento excêntrico

1.3.1 Medições com carga excêntrica

Valor de r	referência =	100,00135	
Posição	Leitura / g		
Centro	99,9996		
Posição 1	100,0001		
Posição 2	99,9992		
Posição 3	99,9993		
Posição 4	100,0001		

1.3.2 Efeito do carregamento excêntrico sobre os resultados, quando anlicável

Valor de referência / g		contrib. carga excêntrica / g		
nominal	aplicado	ao erro ind.	à incerteza	
5	5,00009	0,0E+00	1,1E-05	
10	10,00015	1,0E-04	2,3E-05	
20	20,00024	2,0E-04	4,5E-05	
30	30,00039	2,0E-04	6,8E-05	
40	40,00047	3,0E-04	9,1E-05	
45	45,00056	4,0E-04	1,0E-04	
50	50,00074	4,0E-04	1,1E-04	
80	80,00113	6,0E-04	1,8E-04	
100	100,00135	8,0E-04	2,3E-04	
200	200,00287	1,6E-03	4,5E-04	

1.4 Incertezas combinadas das massas empregadas na calibração

Valor de referência / g		u(ms)
nominal	aplicado	/ g
5	5,00009	2,50E-05
10	10,00015	1,40E-05
20	20,00024	1,70E-05
30	30,00039	3,10E-05
40	40,00047	3,40E-05
45	45,00056	5,90E-05
50	50,00074	2,20E-05
80	80,00113	5,30E-05
100	100,00135	3,40E-05
200	200,00287	6,70E-05

2 Padrões utilizados na calibração

Id. STF	STF 702.00	705.00
Função	padrão de trabalho	padrão de trabalho
Tipo	col. pesos-padrão, cl. F1	col. pesos-padrão, cl. F1
Marca	Sartorius / KN Waagen	KN Waagen
Modelo	YCS01-653-00 / YCW713-00	
Num.série	60328936 / 11128002	(5)
Data cal.	13.12.2012	08.07.2011 / 13.03.2012
Certificado	124664	M-35781 / M-38325
Órgão cal.	CETEC SENAI	KN Waagen
Rastreab.	INMETRO-Brasil	INMETRO-Brasil

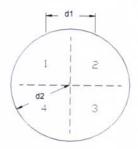
Av. José Cândido da Silveira, 2000 - Horto 31035-536 - Belo Horizonte - MG - Brasil Telefone: (31) 3489-2144 - Fax: (31) 3489-2191 e-mail: cetecsenal@fiemg.com.br - www.flemg.com.br

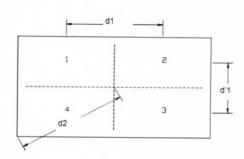
Folha-

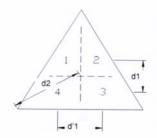
04/04

Gerência de Metrologia

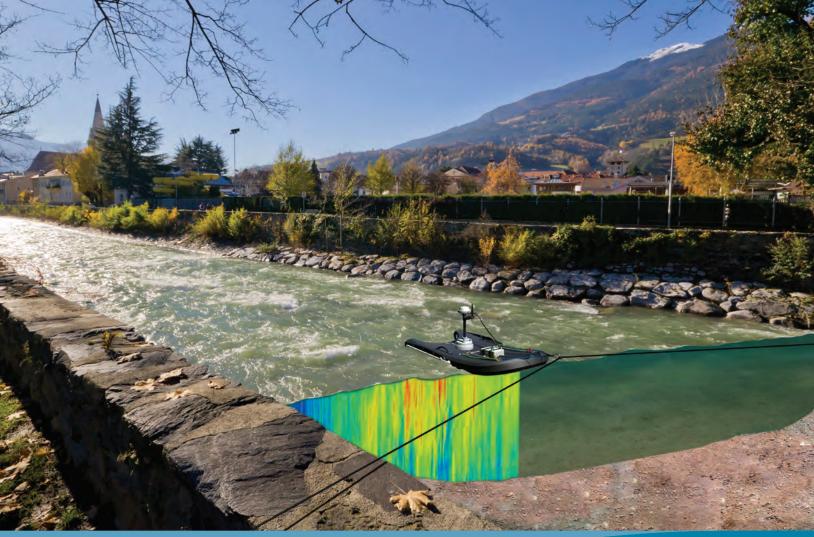
Certificado de Calibração № 124887


3 Condições operacionais


- 3.1 Local: Sala de Balança Analítica CLIENTE
- 3.2 Temperatura local durante a calibração / °C: 22,1
- 3.3 Umidade relativa do ar / %: 57,3
- 3.4 Pressão barométrica / Pa: 92245
- 3.5 Operação: Hugo Fernandes Campos
- 3.6 Forma do prato de pesagem: circular
- 3.7 Massa específica do ar local, durante a calibração / kg/m3: 1,082
- 3.8 Posição do padrão no prato de pesagem no carregamento excêntrico / mm: d1 = 35; d2 = 40


4 Observações

- 4.1 As incertezas padrão combinadas dos padrões são a soma linear das incertezas dos componentes. É considerado o pior caso, que ocorre quando existe correlação entre as massas medidas dos componentes (Myklebust et al., OIML Bull. XXXVIII(2), Apr.97).
- 4.2 A incerteza expandida de medição relatada (U95%) é a incerteza padrão combinada, multiplicada por um fator de abrangência k, o qual, para uma distribuição t com Neff graus de liberdade efetivos, corresponde a uma probabilidade de abrangência de 95%.
- 4.3 A incerteza padrão combinada de medição foi determinada segundo as prescrições do ISO GUM (3a. Ed. Bras. 2003) e a publicação EA-4/02, considerando-se os seguintes componentes: resolução e sensibilidade (inclui repetibilidade e padrão).
- 4.4 Massa específica e incerteza estimada dos materiais dos pesos-padrão, em kg/m3: 1 g 10 kg: aço inox (8000 ± 140), 10 mg 500 mg: Ni (8600 ± 170); 1 mg 5 mg: Al (2700 ± 130)
- 4.5 A incerteza expandida apresentada não incorpora a influência do erro de indicação e do carregamento excêntrico. O erro de indicação apresentado não incorpora a influência do carregamento excêntrico.
- 4.6 A influência do carregamento excêntrico sobre o erro de indicação nos pontos além do ponto medido foi estimada com o emprego de um modelo linear; a correspondente incerteza foi estimada considerando uma distribuição retangular do erro.


4.7 Diagramas de carregamento excêntrico:

M9

Taken to Extremes.

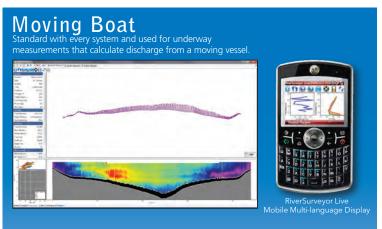
It's a SonTek exclusive - multiple acoustic frequencies fused with precise bandwidth control make for the most robust and continuous shallow-to-deep measurements ever. A deterministic microcontroller expertly apportions the proper acoustics, pulse scheme, and cell size so you can focus on the measurement - not the instrument setup. The system even has an embedded echosounder (vertical beam) for precise channel definition - and it's all designed to work intuitively.

Leading edge technologies such as 2.4 GHz telemetry, mobile phones, and RTK (Real-Time Kinematic) GPS are all incorporated to elevate performance and expand utility.

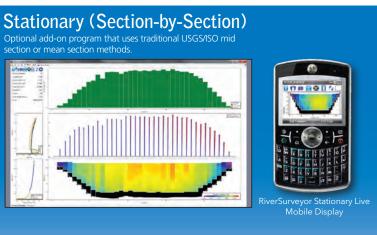
Upgrade and Save. Good news for RiverSurveyor M9 users who also require bathymetric data. Now you can upgrade your RiverSurveyor M9 to include the bathymetry power of the **HydroSurveyor** - a system designed to collect bathymetric, water column velocity profile, and acoustic bottom tracking data as part of a hydrographic survey.

The HydroSurveyor upgrade is all inclusive:

- Full water column velocity mapping,
- Exclusive 5-beam depth sounding
- Acoustic bottom tracking (for speed over ground when GPS is lost)
- Sound speed integration and interpolation (when using with the CastAway-CTD)


Features	Benefits
Multiple acoustic frequencies*	Combines the highest resolution with the greatest range of depths.
Vertical acoustic beam (echosounder)*	Superior channel definition, extends the maximum measurable discharge depth.
Automated cell size*	Always uses the optimal resolution for channel depth - no user input required.
Automated pulse scheme and frequency hopping*	Automatically adjusts the acoustic Doppler sampling (ping) scheme for channel conditions. User does not need to pre-program unit.
Microprocessor computed discharge and secure data*	All discharge computations are done within the S5 or M9 unit internally (in addition to the computer). No lost data from communications drop outs.
Standard 360° compass and two-axis tilt sensor	Compensates for vessel motion due to surface conditions.
Reverberation control with ping rates to 70Hz	High ping rates ensure extremely robust data collection.
Pulse-coherent processing	Maximizes high resolution performance in shallow water.
Bottom-tracking	High precision vessel tracking and depth measurement without GPS requirement.
RTK GPS (optional)	Ultra precise earth-referenced positioning as an alternative to bottom tracking in moving bed or other difficult situations.

^{*}RiverSurveyor technology patent number 8,125,849



Display. Process. Analyze.

Exceed your expectations both during and after the measurement with the RiverSurveyor Live! software suite for both PC and mobile platforms. All programs take full advantage of SmartPulseHD™ and the intelligent software ensures no loss of data during telemetry dropouts. Easily switch between computer or mobile devices during mid-measurement. Several quality indicators and statistics with selectable graphics provide instant feedback on data collection. Multi-language support includes Afrikaans, Catalan, Chinese, English (UK & US), French, German, Hungarian, Italian, Japanese, Korean, Polish, Portuguese, Spanish and Turkish. Need your language? Let us know at inquiry@sontek.com.

- Enables you to efficiently transect from one bank to the other with a full contour plot of the water velocity profile and bottom bathymetry.
- View multiple data results (bottom-track, vertical beam, GPS-GGA, and GPS-VTG) simultaneously.
- Supports USGS Loop Correction Method for moving bed conditions.

- An alternative to moving boat method for highly turbulent areas or moving bed environments where GPS is unavailable.
- Supports discharge measurements through ice holes.
- Supports sections that are braided or have islands.

HydroBoard II: Moving Boat Solution for SonTek ADP®'s

Face challenging white water conditions and extreme weather events head-on with the new SonTek HydroBoard II.

Innovative. Face the challenge of high velocity discharge measurements with the confidence gained from the use of the new SonTek HydroBoard II. The new dive-resistant, flexible body design allows the HydroBoard II to be used anywhere from low velocity irrigation canals to high-velocity mountain streams.

Rugged. Specifically designed with the full forces of nature in mind, the HydroBoard II uses a highly buoyant material, secure mounting hardware for the RiverSurveyor and HydroSurveyor ADP systems.

Stable. One of the great sources of error in an ADP discharge measurement is excessive and irregular speed. This sleek and sturdy design provides the user with the platform to achieve the controlled speed and tracking conducive to quality ADP discharge measurements.

RiverSurveyor accessories and specifications

RiverSurveyor Live Mobile

running on a SonTekprovided handheld and SonTek Bridge makes one-man system operation simple. (Model subject to change.)

The Power/Communications Module (PCM) for the S5 and the M9 features optional rechargeable battery packs. It can be factory-configured with 2.4 GHz telemetry, SBAS-GPS, or RTK GPS.

The optional SonTek RTK GPS³ solution is easy to use and offers an incredibly precise, fully integrated boat speed solution to augment, or be an alternative to, bottom tracking.

All-in-one, rugged and easy to transport, this dive-resistant design allows the RiverSurveyor to be used in challenging flow conditions.

HydroBoard II Bags:

Outfitted with back pack and shoulder straps, these bags offer the perfect transportation option for both all SonTek HydroBoards.

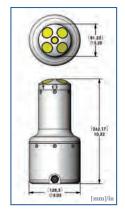
Delrin/aluminum fixture that is custom designed for the M9 or S5 to facilitate mounting over the side of a boat. (Attachment to boat not included.)

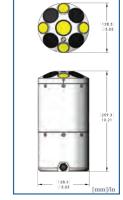
Contact SonTek for trimaran solutions to fit special applications.

	RiverSurveyor S5	RiverSurveyor M9
Velocity Measurement		
Profiling Range (Distance)	0.06m to 5m	0.06m to 40m
Profiling Range ¹ (Velocity)	+/- 20 m/s	+/- 20 m/s
Accuracy ¹	Up to +/- 0.25% of measured velocity; +/- 0.2cm/s	Up to +/- 0.25% of measured velocity; +/- 0.2cm/s
Resolution	0.001 m/s	0.001 m/s
Number of Cells	Up to 128	Up to128
Cell Size	0.02m to 0.5m	0.02m to 4m
Transducer Configuration	Five (5) Transducers;	Nine (9) Transducers;
	4-beam 3.0 MHz Janus at 25° Slant Angle;	Dual 4-Beam 3.0 MHz/1.0 MHz Janus at 25° Slant Angle;
	1.0 MHz Vertical Beam Echosounder	0.5 MHz Vertical Beam Echosounder
Depth Measurement		
Range	0.20m to 15m	0.20m to 80m
Accuracy	1%	1%
Resolution	0.001m	0.001m
Discharge Measurement		
Range with Bottom-Track	0.3m to 5m	0.3m to 40m
Range with RTK GPS or DGPS	0.3m to 15m	0.3m to 80m
Computations	Internal	Internal
SE /N 40 A 1 15: 10 :0 :0 ::		

S5/M9 Additional Specifications

- Temperature Sensor
 - Resolution: ± 0.01° C
 - Accuracy: ± 0.1° C
- Compass/Tilt (Solid State Type)
 - Range: 360°
 - Heading Accuracy: ± 2°
 - Pitch/Roll: ± 1°
- Internal Recorder Size: 8GB
- Power/Communications
 - 12 18v DC
 - RS232 Communications
 - RS232 Serial GPS Input
 - Max Data Output Rate: 2 Hz
 - Internal Sampling Rate: Up to 70 Hz
- Physical/Environmental
 - Depth Rating: 50m
 - Operating Temperature: -5° to 45° C
 - Storage Temperature: -10° to 70° C


Power Communications Module


- Batteries
 - Type: Any AA-sized batteries
 - Capacity/duration: 8 hours of continuous operation (6 hours with RTK GPS enabled)
- GPS Options
 - SBAS GPS Horizontal Accuracy²: <1.0m
 - RTK GPS Horizontal Precision (repeatability)^{2,3}: <0.03m

Range (Std.; 10 dBm)⁴ Range (High; 22dBm)⁴

• Base to Rover 1000 m 3000 m 450 m 1500 m · PC to Rover

 Mobile to Rover 200 m 400 m

RiverSurveyor-S5

- Weight in Air: 1.1 kg (2.5 lb)
- Weight in Water: -0.3 kg (-0.7 lb)
- RiverSurveyor-M9 - Weight in Air: 2.3 kg (5.0 lb) - Weight in Water: -0.6 kg (-1.3 lb)

¹Please contact SonTek for accuracies better than 1%, or velocities >10 m/s. ²Depends on multipath environment, antenna selection, number of satellites in view, satellite geometry, and ionospheric activity. ³Contact SonTek for details about RTK GPS performance and specifications. ⁴High power may not be available in all countries; all ranges with default 2 dBi antenna and line-of-sight.

Founded in 1992 and advancing environmental science globally, SonTek manufactures acoustic Doppler instrumentation for water velocity measurement in oceans, rivers, lakes, harbors, canals, estuaries, industrial pipes and laboratories. SonTek's sophisticated and proprietary technology serves as the foundation for some of the industry's most trusted flow data collection systems. SonTek is headquartered in San Diego, California, and is a division of Xylem Inc.

SonTek 9940 Summers Ridge Road San Diego CA 92121 Tel +1.858.546.8327 Fax +1.858.546.8150 www.sontek.com

YSI, Inc. 1700/1725 Brannum Lane Yellow Springs, Ohio 45387 Tel +1.937.767.7241 Fax +1.937.767.9353 www.ysi.com

Xylem, Inc. 1133 Westchester Avenue White Plains, NY 10604 Tel +1.914.323.5700 Fax +1.914.323.5800 www.xyleminc.com

www.sontek.com

S05-03